Instruction-tuning can be substantially optimized through enhanced diversity, resulting in models capable of handling a broader spectrum of tasks. However, existing data employed for such tuning often exhibit an inadequate coverage of individual domains, limiting the scope for nuanced comprehension and interactions within these areas. To address this deficiency, we propose Explore-Instruct, a novel approach to enhance the data coverage to be used in domain-specific instruction-tuning through active exploration via Large Language Models (LLMs). Built upon representative domain use cases, Explore-Instruct explores a multitude of variations or possibilities by implementing a search algorithm to obtain diversified and domain-focused instruction-tuning data. Our data-centric analysis validates the effectiveness of this proposed approach in improving domain-specific instruction coverage. Moreover, our model's performance demonstrates considerable advancements over multiple baselines, including those utilizing domain-specific data enhancement. Our findings offer a promising opportunity to improve instruction coverage, especially in domain-specific contexts, thereby advancing the development of adaptable language models. Our code, model weights, and data are public at \url{//github.com/fanqiwan/Explore-Instruct}.
Diffusion-based models, such as the Stable Diffusion model, have revolutionized text-to-image synthesis with their ability to produce high-quality, high-resolution images. These advancements have prompted significant progress in image generation and editing tasks. However, these models also raise concerns due to their tendency to memorize and potentially replicate exact training samples, posing privacy risks and enabling adversarial attacks. Duplication in training datasets is recognized as a major factor contributing to memorization, and various forms of memorization have been studied so far. This paper focuses on two distinct and underexplored types of duplication that lead to replication during inference in diffusion-based models, particularly in the Stable Diffusion model. We delve into these lesser-studied duplication phenomena and their implications through two case studies, aiming to contribute to the safer and more responsible use of generative models in various applications.
Diffusion models have achieved state-of-the-art results on many modalities including images, speech, and video. However, existing models are not tailored to support remote sensing data, which is widely used in important applications including environmental monitoring and crop-yield prediction. Satellite images are significantly different from natural images -- they can be multi-spectral, irregularly sampled across time -- and existing diffusion models trained on images from the Web do not support them. Furthermore, remote sensing data is inherently spatio-temporal, requiring conditional generation tasks not supported by traditional methods based on captions or images. In this paper, we present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets. As text-based captions are sparsely available for satellite images, we incorporate the associated metadata such as geolocation as conditioning information. Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting. Our method outperforms previous state-of-the-art methods for satellite image generation and is the first large-scale $\textit{generative}$ foundation model for satellite imagery.
Expressive state-of-the-art separation logics rely on step-indexing to model semantically complex features and to support modular reasoning about imperative higher-order concurrent and distributed programs. Step-indexing comes, however, with an inherent cost: it restricts the adequacy theorem of program logics to a fairly simple class of safety properties. In this paper, we explore if and how intensional refinement is a viable methodology for strengthening higher-order concurrent (and distributed) separation logic to prove non-trivial safety and liveness properties. Specifically, we introduce Trillium, a language-agnostic separation logic framework for showing intensional refinement relations between traces of a program and a model. We instantiate Trillium with a concurrent language and develop Fairis, a concurrent separation logic, that we use to show liveness properties of concurrent programs under fair scheduling assumptions through a fair liveness-preserving refinement of a model. We also instantiate Trillium with a distributed language and obtain an extension of Aneris, a distributed separation logic, which we use to show refinement relations between distributed systems and TLA+ models.
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers. This technique is used both for fine-tuning (LoRA, QLoRA) and full train (ReLoRA). This paper presents the RunLoRA framework for efficient implementations of LoRA that significantly improves the speed of neural network training and fine-tuning using low-rank adapters. The proposed implementation optimizes the computation of LoRA operations based on dimensions of corresponding linear layer, layer input dimensions and lora rank by choosing best forward and backward computation graph based on FLOPs and time estimations, resulting in faster training without sacrificing accuracy. The experimental results show up to 17% speedup on Llama family of models.
Semi-supervised object detection is crucial for 3D scene understanding, efficiently addressing the limitation of acquiring large-scale 3D bounding box annotations. Existing methods typically employ a teacher-student framework with pseudo-labeling to leverage unlabeled point clouds. However, producing reliable pseudo-labels in a diverse 3D space still remains challenging. In this work, we propose Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection. Specifically, we include noises to produce corrupted 3D object size and class label distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs. Moreover, we integrate the diffusion model into the teacher-student framework, so that the denoised bounding boxes can be used to improve pseudo-label generation, as well as the entire semi-supervised learning process. We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods. We also present extensive analysis to understand how our diffusion model design affects performance in semi-supervised learning.
Untrusted data used to train a model might have been manipulated to endow the learned model with hidden properties that the data contributor might later exploit. Data purification aims to remove such manipulations prior to training the model. We propose Mendata, a novel framework to purify manipulated training data. Starting from a small reference dataset in which a large majority of the inputs are clean, Mendata perturbs the training inputs so that they retain their utility but are distributed similarly (as measured by Wasserstein distance) to the reference data, thereby eliminating hidden properties from the learned model. A key challenge is how to find such perturbations, which we address by formulating a min-max optimization problem and developing a two-step method to iteratively solve it. We demonstrate the effectiveness of Mendata by applying it to defeat state-of-the-art data poisoning and data tracing techniques.
Perceiving paintings entails more than merely engaging the audience's eyes and brains; their perceptions and experiences of a painting can be intricately connected with body movement. This paper proposes an interactive art approach entitled "Painterly Reality" that facilitates the perception and interaction with paintings in a three-dimensional manner. Its objective is to promote bodily engagement with the painting (i.e., embedded body embodiment and its movement and interaction) to enhance the audience's experience, while maintaining its essence. Unlike two-dimensional interactions, this approach constructs the Painterly Reality by capturing the audience's body embodiment in real-time and embedding into a three-dimensional painterly world derived from a given painting input. Through their body embodiment, the audience can navigate the painterly world and play with the magical realism (i.e., interactive painterly objects), fostering meaningful experiences via interactions. The Painterly Reality is subsequently projected through an Augmented Reality Mirror as a live painting and displayed in front of the audience. Hence, the audience can gain enhanced experiences through bodily engagement while simultaneously viewing and appreciating the live painting. The paper implements the proposed approach as an interactive artwork, entitled "Everyday Conjunctive," with Fong Tse Ka's painting and installs in a local museum, which successfully enhances audience experience through bodily engagement.
Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.