亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a systematic approach to logical predicates based on universal coalgebra and higher-order abstract GSOS, thus making a first step towards a unifying theory of logical relations. We first observe that logical predicates are special cases of coalgebraic invariants on mixed-variance functors. We then introduce the notion of a locally maximal logical refinement of a given predicate, with a view to enabling inductive reasoning, and identify sufficient conditions on the overall setup in which locally maximal logical refinements canonically exist. Finally, we develop induction-up-to techniques that simplify inductive proofs via logical predicates on systems encoded as (certain classes of) higher-order GSOS laws by identifying and abstracting away from their boiler-plate part.

相關內容

We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an a~priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown functions and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. The combination of this exploration criterion with a well known Bayesian optimization acquisition function yields a novel safe Bayesian optimization selection criterion. Our approach is naturally applicable to continuous domains and does not require additional explicit hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we learn about the value of the safe optimum up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.

We propose a novel data-driven linear inverse model, called Colored-LIM, to extract the linear dynamics and diffusion matrix that define a linear stochastic process driven by an Ornstein-Uhlenbeck colored-noise. The Colored-LIM is a new variant of the classical linear inverse model (LIM) which relies on the white noise assumption. Similar to LIM, the Colored-LIM approximates the linear dynamics from a finite realization of a stochastic process and then solves the diffusion matrix based on, for instance, a generalized fluctuation-dissipation relation, which can be done by solving a system of linear equations. The main difficulty is that in practice, the colored-noise process can be hardly observed while it is correlated to the stochastic process of interest. Nevertheless, we show that the local behavior of the correlation function of the observable encodes the dynamics of the stochastic process and the diffusive behavior of the colored-noise. In this article, we review the classical LIM and develop Colored-LIM with a mathematical background and rigorous derivations. In the numerical experiments, we examine the performance of both LIM and Colored-LIM. Finally, we discuss some false attempts to build a linear inverse model for colored-noise driven processes, and investigate the potential misuse and its consequence of LIM in the appendices.

We present a parallel algorithm for the $(1-\epsilon)$-approximate maximum flow problem in capacitated, undirected graphs with $n$ vertices and $m$ edges, achieving $O(\epsilon^{-3}\text{polylog} n)$ depth and $O(m \epsilon^{-3} \text{polylog} n)$ work in the PRAM model. Although near-linear time sequential algorithms for this problem have been known for almost a decade, no parallel algorithms that simultaneously achieved polylogarithmic depth and near-linear work were known. At the heart of our result is a polylogarithmic depth, near-linear work recursive algorithm for computing congestion approximators. Our algorithm involves a recursive step to obtain a low-quality congestion approximator followed by a "boosting" step to improve its quality which prevents a multiplicative blow-up in error. Similar to Peng [SODA'16], our boosting step builds upon the hierarchical decomposition scheme of R\"acke, Shah, and T\"aubig [SODA'14]. A direct implementation of this approach, however, leads only to an algorithm with $n^{o(1)}$ depth and $m^{1+o(1)}$ work. To get around this, we introduce a new hierarchical decomposition scheme, in which we only need to solve maximum flows on subgraphs obtained by contracting vertices, as opposed to vertex-induced subgraphs used in R\"acke, Shah, and T\"aubig [SODA'14]. In particular, we are able to directly extract congestion approximators for the subgraphs from a congestion approximator for the entire graph, thereby avoiding additional recursion on those subgraphs. Along the way, we also develop a parallel flow-decomposition algorithm that is crucial to achieving polylogarithmic depth and may be of independent interest.

Fine-tuning on generalized tasks such as instruction following, code generation, and mathematics has been shown to enhance language models' performance on a range of tasks. Nevertheless, explanations of how such fine-tuning influences the internal computations in these models remain elusive. We study how fine-tuning affects the internal mechanisms implemented in language models. As a case study, we explore the property of entity tracking, a crucial facet of language comprehension, where models fine-tuned on mathematics have substantial performance gains. We identify the mechanism that enables entity tracking and show that (i) in both the original model and its fine-tuned versions primarily the same circuit implements entity tracking. In fact, the entity tracking circuit of the original model on the fine-tuned versions performs better than the full original model. (ii) The circuits of all the models implement roughly the same functionality: Entity tracking is performed by tracking the position of the correct entity in both the original model and its fine-tuned versions. (iii) Performance boost in the fine-tuned models is primarily attributed to its improved ability to handle the augmented positional information. To uncover these findings, we employ: Patch Patching, DCM, which automatically detects model components responsible for specific semantics, and CMAP, a new approach for patching activations across models to reveal improved mechanisms. Our findings suggest that fine-tuning enhances, rather than fundamentally alters, the mechanistic operation of the model.

With the development of Shor's algorithm, some nondeterministic polynomial (NP) time problems (e.g. prime factorization problems and discrete logarithm problems) may be solved in polynomial time. In recent years, although some homomorphic encryption algorithms have been proposed based on prime factorization problems, the algorithms may be cracked by quantum computing attacks. Therefore, this study proposes a post-quantum cryptography (PQC)-based homomorphic encryption method which includes the homomorphic encryption function based on a code-based cryptography method for avoiding quantum computing attacks. Subsection 3.2 proposes mathematical models to prove the feasibility of the proposed method, and Subsection 3.3 gives calculation examples to present the detailed steps of the proposed method. In experimental environments, the mainstream cryptography methods (i.e. RSA cryptography and elliptic curve cryptography (ECC)) have been compared, and the results show that the encryption time and decryption time of the proposed method are shorter than other cryptography methods. Furthermore, the proposed method is designed based on a non-negative matrix factorization problem (i.e. a NP problem) for resisting quantum computing attacks.

We study computational-statistical gaps for improper learning in sparse linear regression. More specifically, given $n$ samples from a $k$-sparse linear model in dimension $d$, we ask what is the minimum sample complexity to efficiently (in time polynomial in $d$, $k$, and $n$) find a potentially dense estimate for the regression vector that achieves non-trivial prediction error on the $n$ samples. Information-theoretically this can be achieved using $\Theta(k \log (d/k))$ samples. Yet, despite its prominence in the literature, there is no polynomial-time algorithm known to achieve the same guarantees using less than $\Theta(d)$ samples without additional restrictions on the model. Similarly, existing hardness results are either restricted to the proper setting, in which the estimate must be sparse as well, or only apply to specific algorithms. We give evidence that efficient algorithms for this task require at least (roughly) $\Omega(k^2)$ samples. In particular, we show that an improper learning algorithm for sparse linear regression can be used to solve sparse PCA problems (with a negative spike) in their Wishart form, in regimes in which efficient algorithms are widely believed to require at least $\Omega(k^2)$ samples. We complement our reduction with low-degree and statistical query lower bounds for the sparse PCA problems from which we reduce. Our hardness results apply to the (correlated) random design setting in which the covariates are drawn i.i.d. from a mean-zero Gaussian distribution with unknown covariance.

Do LMs infer the semantics of text from co-occurrence patterns in their training data? Merrill et al. (2022) argue that, in theory, probabilities predicted by an optimal LM encode semantic information about entailment relations, but it is unclear whether neural LMs trained on corpora learn entailment in this way because of strong idealizing assumptions made by Merrill et al. In this work, we investigate whether their theory can be used to decode entailment judgments from neural LMs. We find that a test similar to theirs can decode entailment relations between natural sentences, well above random chance, though not perfectly, across many datasets and LMs. This suggests LMs implicitly model aspects of semantics to predict semantic effects on sentence co-occurrence patterns. However, we find the test that predicts entailment in practice works in the opposite direction to the theoretical test. We thus revisit the assumptions underlying the original test, finding its derivation did not adequately account for redundancy in human-written text. We argue that correctly accounting for redundancy related to explanations might derive the observed flipped test and, more generally, improve linguistic theories of human speakers.

Microservices expose their functionality via remote Application Programming Interfaces (APIs), e.g., based on HTTP or asynchronous messaging technology. To solve recurring problems in this design space, Microservice API Patterns (MAPs) have emerged to capture the collective experience of the API design community. At present, there is a lack of empirical evidence for the effectiveness of these patterns, e.g., how they impact understandability and API usability. We therefore conducted a controlled experiment with 6 microservice patterns to evaluate their impact on understandability with 65 diverse participants. Additionally, we wanted to study how demographics like years of professional experience or experience with MAPs influence the effects of the patterns. Per pattern, we constructed two API examples, each in a pattern version "P" and a functionally equivalent non-pattern version "N" (24 in total). Based on a crossover design, participants had to answer comprehension questions, while we measured the time. For five of the six patterns, we identified a significant positive impact on understandability, i.e., participants answered faster and / or more correctly for "P". However, effect sizes were mostly small, with one pattern showing a medium effect. The correlations between performance and demographics seem to suggest that certain patterns may introduce additional complexity; people experienced with MAPs will profit more from their effects. This has important implications for training and education around MAPs and other patterns.

This article conducts a large dimensional study of a simple yet quite versatile classification model, encompassing at once multi-task and semi-supervised learning, and taking into account uncertain labeling. Using tools from random matrix theory, we characterize the asymptotics of some key functionals, which allows us on the one hand to predict the performances of the algorithm, and on the other hand to reveal some counter-intuitive guidance on how to use it efficiently. The model, powerful enough to provide good performance guarantees, is also straightforward enough to provide strong insights into its behavior.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司