Information Extraction (IE) seeks to derive structured information from unstructured texts, often facing challenges in low-resource scenarios due to data scarcity and unseen classes. This paper presents a review of neural approaches to low-resource IE from \emph{traditional} and \emph{LLM-based} perspectives, systematically categorizing them into a fine-grained taxonomy. Then we conduct empirical study on LLM-based methods compared with previous state-of-the-art models, and discover that (1) well-tuned LMs are still predominant; (2) tuning open-resource LLMs and ICL with GPT family is promising in general; (3) the optimal LLM-based technical solution for low-resource IE can be task-dependent. In addition, we discuss low-resource IE with LLMs, highlight promising applications, and outline potential research directions. This survey aims to foster understanding of this field, inspire new ideas, and encourage widespread applications in both academia and industry.
We propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10\% inference time compared to NeRF-based methods. Code and more results will be available at //David-Dou.github.io/CoSSegGaussians.
Large Language Models (LLMs) have demonstrated impressive performance in natural language processing tasks by leveraging chain of thought (CoT) that enables step-by-step thinking. Extending LLMs with multimodal capabilities is the recent interest, but incurs computational cost and requires substantial hardware resources. To address these challenges, we propose KAM-CoT a framework that integrates CoT reasoning, Knowledge Graphs (KGs), and multiple modalities for a comprehensive understanding of multimodal tasks. KAM-CoT adopts a two-stage training process with KG grounding to generate effective rationales and answers. By incorporating external knowledge from KGs during reasoning, the model gains a deeper contextual understanding reducing hallucinations and enhancing the quality of answers. This knowledge-augmented CoT reasoning empowers the model to handle questions requiring external context, providing more informed answers. Experimental findings show KAM-CoT outperforms the state-of-the-art methods. On the ScienceQA dataset, we achieve an average accuracy of 93.87%, surpassing GPT-3.5 (75.17%) by 18% and GPT-4 (83.99%) by 10%. Remarkably, KAM-CoT achieves these results with only 280M trainable parameters at a time, demonstrating its cost-efficiency and effectiveness.
Multi-Objective Recommender Systems (MORSs) emerged as a paradigm to guarantee multiple (often conflicting) goals. Besides accuracy, a MORS can operate at the global level, where additional beyond-accuracy goals are met for the system as a whole, or at the individual level, meaning that the recommendations are tailored to the needs of each user. The state-of-the-art MORSs either operate at the global or individual level, without assuming the co-existence of the two perspectives. In this study, we show that when global and individual objectives co-exist, MORSs are not able to meet both types of goals. To overcome this issue, we present an approach that regulates the recommendation lists so as to guarantee both global and individual perspectives, while preserving its effectiveness. Specifically, as individual perspective, we tackle genre calibration and, as global perspective, provider fairness. We validate our approach on two real-world datasets, publicly released with this paper.
We propose Constraint-Generation Policy Optimization (CGPO) for optimizing policy parameters within compact and interpretable policy classes for mixed discrete-continuous Markov Decision Processes (DC-MDPs). CGPO is not only able to provide bounded policy error guarantees over an infinite range of initial states for many DC-MDPs with expressive nonlinear dynamics, but it can also provably derive optimal policies in cases where it terminates with zero error. Furthermore, CGPO can generate worst-case state trajectories to diagnose policy deficiencies and provide counterfactual explanations of optimal actions. To achieve such results, CGPO proposes a bi-level mixed-integer nonlinear optimization framework for optimizing policies within defined expressivity classes (i.e. piecewise (non)-linear) and reduces it to an optimal constraint generation methodology that adversarially generates worst-case state trajectories. Furthermore, leveraging modern nonlinear optimizers, CGPO can obtain solutions with bounded optimality gap guarantees. We handle stochastic transitions through explicit marginalization (where applicable) or chance-constraints, providing high-probability policy performance guarantees. We also present a road-map for understanding the computational complexities associated with different expressivity classes of policy, reward, and transition dynamics. We experimentally demonstrate the applicability of CGPO in diverse domains, including inventory control, management of a system of water reservoirs, and physics control. In summary, we provide a solution for deriving structured, compact, and explainable policies with bounded performance guarantees, enabling worst-case scenario generation and counterfactual policy diagnostics.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.