亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-and-language tasks are gaining popularity in the research community, but the focus is still mainly on English. We propose a pipeline that utilizes English-only vision-language models to train a monolingual model for a target language. We propose to extend OSCAR+, a model which leverages object tags as anchor points for learning image-text alignments, to train on visual question answering datasets in different languages. We propose a novel approach to knowledge distillation to train the model in other languages using parallel sentences. Compared to other models that use the target language in the pretraining corpora, we can leverage an existing English model to transfer the knowledge to the target language using significantly lesser resources. We also release a large-scale visual question answering dataset in Japanese and Hindi language. Though we restrict our work to visual question answering, our model can be extended to any sequence-level classification task, and it can be extended to other languages as well. This paper focuses on two languages for the visual question answering task - Japanese and Hindi. Our pipeline outperforms the current state-of-the-art models by a relative increase of 4.4% and 13.4% respectively in accuracy.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Humans usually convey emotions voluntarily or involuntarily by facial expressions. Automatically recognizing the basic expression (such as happiness, sadness, and neutral) from a facial image, i.e., facial expression recognition (FER), is extremely challenging and attracts much research interests. Large scale datasets and powerful inference models have been proposed to address the problem. Though considerable progress has been made, most of the state of the arts employing convolutional neural networks (CNNs) or elaborately modified Vision Transformers (ViTs) depend heavily on upstream supervised pretraining. Transformers are taking place the domination of CNNs in more and more computer vision tasks. But they usually need much more data to train, since they use less inductive biases compared with CNNs. To explore whether a vanilla ViT without extra training samples from upstream tasks is able to achieve competitive accuracy, we use a plain ViT with MAE pretraining to perform the FER task. Specifically, we first pretrain the original ViT as a Masked Autoencoder (MAE) on a large facial expression dataset without expression labels. Then, we fine-tune the ViT on popular facial expression datasets with expression labels. The presented method is quite competitive with 90.22\% on RAF-DB, 61.73\% on AfectNet and can serve as a simple yet strong ViT-based baseline for FER studies.

Vision transformer (ViT) recently has drawn great attention in computer vision due to its remarkable model capability. However, most prevailing ViT models suffer from huge number of parameters, restricting their applicability on devices with limited resources. To alleviate this issue, we propose TinyViT, a new family of tiny and efficient small vision transformers pretrained on large-scale datasets with our proposed fast distillation framework. The central idea is to transfer knowledge from large pretrained models to small ones, while enabling small models to get the dividends of massive pretraining data. More specifically, we apply distillation during pretraining for knowledge transfer. The logits of large teacher models are sparsified and stored in disk in advance to save the memory cost and computation overheads. The tiny student transformers are automatically scaled down from a large pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Moreover, increasing image resolutions, TinyViT can reach 86.5% accuracy, being slightly better than Swin-L while using only 11% parameters. Last but not the least, we demonstrate a good transfer ability of TinyViT on various downstream tasks. Code and models are available at //github.com/microsoft/Cream/tree/main/TinyViT.

Recent breakthroughs in Natural Language Processing (NLP) have been driven by language models trained on a massive amount of plain text. While powerful, deriving supervision from textual resources is still an open question. For example, language model pretraining often neglects the rich, freely-available structures in textual data. In this thesis, we describe three lines of work that seek to improve the training and evaluation of neural models using naturally-occurring supervision. We first investigate self-supervised training losses to help enhance the performance of pretrained language models for various NLP tasks. Specifically, we alter the sentence prediction loss to make it better suited to other pretraining losses and more challenging to solve. We design an intermediate finetuning step that uses self-supervised training to promote models' ability in cross-task generalization. Then we describe methods to leverage the structures in Wikipedia and paraphrases. In particular, we propose training losses to exploit hyperlinks, article structures, and article category graphs for entity-, discourse-, entailment-related knowledge. We propose a framework that uses paraphrase pairs to disentangle semantics and syntax in sentence representations. We extend the framework for a novel generation task that controls the syntax of output text with a sentential exemplar. Lastly, we discuss our work on tailoring textual resources for establishing challenging evaluation tasks. We introduce three datasets by defining novel tasks using various fan-contributed websites, including a long-form data-to-text generation dataset, a screenplay summarization dataset, and a long-form story generation dataset. These datasets have unique characteristics offering challenges to future work in their respective task settings.

Recent attacks on Machine Learning (ML) models such as evasion attacks with adversarial examples and models stealing through extraction attacks pose several security and privacy threats. Prior work proposes to use adversarial training to secure models from adversarial examples that can evade the classification of a model and deteriorate its performance. However, this protection technique affects the model's decision boundary and its prediction probabilities, hence it might raise model privacy risks. In fact, a malicious user using only a query access to the prediction output of a model can extract it and obtain a high-accuracy and high-fidelity surrogate model. To have a greater extraction, these attacks leverage the prediction probabilities of the victim model. Indeed, all previous work on extraction attacks do not take into consideration the changes in the training process for security purposes. In this paper, we propose a framework to assess extraction attacks on adversarially trained models with vision datasets. To the best of our knowledge, our work is the first to perform such evaluation. Through an extensive empirical study, we demonstrate that adversarially trained models are more vulnerable to extraction attacks than models obtained under natural training circumstances. They can achieve up to $\times1.2$ higher accuracy and agreement with a fraction lower than $\times0.75$ of the queries. We additionally find that the adversarial robustness capability is transferable through extraction attacks, i.e., extracted Deep Neural Networks (DNNs) from robust models show an enhanced accuracy to adversarial examples compared to extracted DNNs from naturally trained (i.e. standard) models.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司