亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traceless Genetic Programming (TGP) is a new Genetic Programming (GP) that may be used for solving difficult real-world problems. The main difference between TGP and other GP techniques is that TGP does not explicitly store the evolved computer programs. In this paper, TGP is used for solving real-world classification problems taken from PROBEN1. Numerical experiments show that TGP performs similar and sometimes even better than other GP techniques for the considered test problems.

相關內容

We study deterministic and randomized streaming algorithms for word problems of finitely generated groups. For finitely generated linear groups, metabelian groups and free solvable groups we show the existence of randomized streaming algorithms with logarithmic space complexity for their word problems. We also show that the class of finitely generated groups with a logspace randomized streaming algorithm for the word problem is closed under several group theoretical constructions: finite extensions, direct products, free products and wreath products by free abelian groups. We contrast these results with several lower bound. An example of a finitely presented group, where the word problem has only a linear space randomized streaming algorithm, is Thompson's group $F$.

Protein engineers conventionally use tools such as Directed Evolution to find new proteins with better functionalities and traits. More recently, computational techniques and especially machine learning approaches have been recruited to assist Directed Evolution, showing promising results. In this paper, we propose POET, a computational Genetic Programming tool based on evolutionary computation methods to enhance screening and mutagenesis in Directed Evolution and help protein engineers to find proteins that have better functionality. As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer contrast mechanism. The evolutionary methods used in POET are described, and the performance of POET in different epochs of our experiments with Chemical Exchange Saturation Transfer contrast are studied. Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.

Real-world sequential decision making problems commonly involve partial observability, which requires the agent to maintain a memory of history in order to infer the latent states, plan and make good decisions. Coping with partial observability in general is extremely challenging, as a number of worst-case statistical and computational barriers are known in learning Partially Observable Markov Decision Processes (POMDPs). Motivated by the problem structure in several physical applications, as well as a commonly used technique known as "frame stacking", this paper proposes to study a new subclass of POMDPs, whose latent states can be decoded by the most recent history of a short length $m$. We establish a set of upper and lower bounds on the sample complexity for learning near-optimal policies for this class of problems in both tabular and rich-observation settings (where the number of observations is enormous). In particular, in the rich-observation setting, we develop new algorithms using a novel "moment matching" approach with a sample complexity that scales exponentially with the short length $m$ rather than the problem horizon, and is independent of the number of observations. Our results show that a short-term memory suffices for reinforcement learning in these environments.

In order for a robot to perform a task, several algorithms need to be executed, sometimes, simultaneously. Algorithms can be run either on the robot itself or, upon request, be performed on cloud infrastructure. The term cloud infrastructure is used to describe hardware, storage, abstracted resources, and network resources related to cloud computing. Depending on the decisions on where to execute the algorithms, the overall execution time and necessary memory space for the robot will change accordingly. The price of a robot depends, among other things, on its memory capacity and computational power. We answer the question of how to keep a given performance and use a cheaper robot (lower resources) by assigning computational tasks to the cloud infrastructure, depending on memory, computational power, and communication constraints. Also, for a fixed robot, our model provides a way to have optimal overall performance. We provide a general model for the optimal decision of algorithm allocation under certain constraints. We exemplify the model with simulation results. The main advantage of our model is that it provides an optimal task allocation simultaneously for memory and time.

We study ROUND-UFP and ROUND-SAP, two generalizations of the classical BIN PACKING problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of tasks where for each task we are given a demand and a subpath. In ROUND-UFP, the goal is to find a packing of all tasks into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of tasks on any edge does not exceed the capacity of the respective edge. In ROUND-SAP, the tasks are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to BIN PACKING, both the problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic $(2+\varepsilon)$-approximations for both problems. For the general case, we obtain an $O(\log\log n)$-approximation algorithm and an $O(\log\log\frac{1}{\delta})$-approximation under $(1+\delta)$-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum task demand is at most the minimum edge capacity), we obtain absolute $12$- and asymptotic $(16+\varepsilon)$-approximation algorithms for ROUND-UFP and ROUND-SAP, respectively.

Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream task. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification, and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical many-class classification task, and the results on benchmarks show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of PLMs for those complicated classification tasks.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司