Remote sensing image super-resolution (RSISR) plays a vital role in enhancing spatial detials and improving the quality of satellite imagery. Recently, Transformer-based models have shown competitive performance in RSISR. To mitigate the quadratic computational complexity resulting from global self-attention, various methods constrain attention to a local window, enhancing its efficiency. Consequently, the receptive fields in a single attention layer are inadequate, leading to insufficient context modeling. Furthermore, while most transform-based approaches reuse shallow features through skip connections, relying solely on these connections treats shallow and deep features equally, impeding the model's ability to characterize them. To address these issues, we propose a novel transformer architecture called Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based Transformer Network (SPIFFNet) for RSISR. Our proposed model effectively enhances global cognition and understanding of the entire image, facilitating efficient integration of features cross-stages. The model incorporates cross-spatial pixel integration attention (CSPIA) to introduce contextual information into a local window, while cross-stage feature fusion attention (CSFFA) adaptively fuses features from the previous stage to improve feature expression in line with the requirements of the current stage. We conducted comprehensive experiments on multiple benchmark datasets, demonstrating the superior performance of our proposed SPIFFNet in terms of both quantitative metrics and visual quality when compared to state-of-the-art methods.
Approximate Nearest Neighbor Search (ANNS) plays a critical role in various disciplines spanning data mining and artificial intelligence, from information retrieval and computer vision to natural language processing and recommender systems. Data volumes have soared in recent years and the computational cost of an exhaustive exact nearest neighbor search is often prohibitive, necessitating the adoption of approximate techniques. The balanced performance and recall of graph-based approaches have more recently garnered significant attention in ANNS algorithms, however, only a few studies have explored harnessing the power of GPUs and multi-core processors despite the widespread use of massively parallel and general-purpose computing. To bridge this gap, we introduce a novel parallel computing hardware-based proximity graph and search algorithm. By leveraging the high-performance capabilities of modern hardware, our approach achieves remarkable efficiency gains. In particular, our method surpasses existing CPU and GPU-based methods in constructing the proximity graph, demonstrating higher throughput in both large- and small-batch searches while maintaining compatible accuracy. In graph construction time, our method, CAGRA, is 2.2~27x faster than HNSW, which is one of the CPU SOTA implementations. In large-batch query throughput in the 90% to 95% recall range, our method is 33~77x faster than HNSW, and is 3.8~8.8x faster than the SOTA implementations for GPU. For a single query, our method is 3.4~53x faster than HNSW at 95% recall.
We explore on various attention methods on frequency and channel dimensions for sound event detection (SED) in order to enhance performance with minimal increase in computational cost while leveraging domain knowledge to address the frequency dimension of audio data. We have introduced frequency dynamic convolution (FDY conv) in a previous work to release the translational equivariance issue associated with 2D convolution on the frequency dimension of 2D audio data. Although this approach demonstrated state-of-the-art SED performance, it resulted in a model with 150% more trainable parameters. To achieve comparable SED performance with computationally efficient methods for practicality, we explore on lighter alternative attention methods. In addition, we focus on attention methods applied to frequency and channel dimensions. Joint application Squeeze-and-excitation (SE) module and time-frame frequency-wise SE (tfwSE) to apply attention on both frequency and channel dimensions shows comparable performance to SED model with FDY conv with only 2.7% more trainable parameters compared to the baseline model. In addition, we performed class-wise comparison of various attention methods to further discuss various attention methods' characteristics.
Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.1 mAP with higher resolution inputs. Code is available at //github.com/MCG-NJU/EVAD.
Image Signal Processors (ISPs) play important roles in image recognition tasks as well as in the perceptual quality of captured images. In most cases, experts make a lot of effort to manually tune many parameters of ISPs, but the parameters are sub-optimal. In the literature, two types of techniques have been actively studied: a machine learning-based parameter tuning technique and a DNN-based ISP technique. The former is lightweight but lacks expressive power. The latter has expressive power, but the computational cost is too heavy on edge devices. To solve these problems, we propose "DynamicISP," which consists of multiple classical ISP functions and dynamically controls the parameters of each frame according to the recognition result of the previous frame. We show our method successfully controls the parameters of multiple ISP functions and achieves state-of-the-art accuracy with low computational cost in single and multi-category object detection tasks.
Although both self-supervised single-frame and multi-frame depth estimation methods only require unlabeled monocular videos for training, the information they leverage varies because single-frame methods mainly rely on appearance-based features while multi-frame methods focus on geometric cues. Considering the complementary information of single-frame and multi-frame methods, some works attempt to leverage single-frame depth to improve multi-frame depth. However, these methods can neither exploit the difference between single-frame depth and multi-frame depth to improve multi-frame depth nor leverage multi-frame depth to optimize single-frame depth models. To fully utilize the mutual influence between single-frame and multi-frame methods, we propose a novel self-supervised training framework. Specifically, we first introduce a pixel-wise adaptive depth sampling module guided by single-frame depth to train the multi-frame model. Then, we leverage the minimum reprojection based distillation loss to transfer the knowledge from the multi-frame depth network to the single-frame network to improve single-frame depth. Finally, we regard the improved single-frame depth as a prior to further boost the performance of multi-frame depth estimation. Experimental results on the KITTI and Cityscapes datasets show that our method outperforms existing approaches in the self-supervised monocular setting.
Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at //github.com/Fanning-Zhang/SATNet.
Recovering a 3D human mesh from a single RGB image is a challenging task due to depth ambiguity and self-occlusion, resulting in a high degree of uncertainty. Meanwhile, diffusion models have recently seen much success in generating high-quality outputs by progressively denoising noisy inputs. Inspired by their capability, we explore a diffusion-based approach for human mesh recovery, and propose a Human Mesh Diffusion (HMDiff) framework which frames mesh recovery as a reverse diffusion process. We also propose a Distribution Alignment Technique (DAT) that injects input-specific distribution information into the diffusion process, and provides useful prior knowledge to simplify the mesh recovery task. Our method achieves state-of-the-art performance on three widely used datasets. Project page: //gongjia0208.github.io/HMDiff/.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.