Diversity optimization seeks to discover a set of solutions that elicit diverse features. Prior work has proposed Novelty Search (NS), which, given a current set of solutions, seeks to expand the set by finding points in areas of low density in the feature space. However, to estimate density, NS relies on a heuristic that considers the k-nearest neighbors of the search point in the feature space, which yields a weaker stability guarantee. We propose Density Descent Search (DDS), an algorithm that explores the feature space via gradient descent on a continuous density estimate of the feature space that also provides stronger stability guarantee. We experiment with DDS and two density estimation methods: kernel density estimation (KDE) and continuous normalizing flow (CNF). On several standard diversity optimization benchmarks, DDS outperforms NS, the recently proposed MAP-Annealing algorithm, and other state-of-the-art baselines. Additionally, we prove that DDS with KDE provides stronger stability guarantees than NS, making it more suitable for adaptive optimizers. Furthermore, we prove that NS is a special case of DDS that descends a KDE of the feature space.
Evidence-based targeting has been a topic of growing interest among the practitioners of policy and business. Formulating decision-maker's policy learning as a fixed-budget best arm identification (BAI) problem with contextual information, we study an optimal adaptive experimental design for policy learning with multiple treatment arms. In the sampling stage, the planner assigns treatment arms adaptively over sequentially arriving experimental units upon observing their contextual information (covariates). After the experiment, the planner recommends an individualized assignment rule to the population. Setting the worst-case expected regret as the performance criterion of adaptive sampling and recommended policies, we derive its asymptotic lower bounds, and propose a strategy, Adaptive Sampling-Policy Learning strategy (PLAS), whose leading factor of the regret upper bound aligns with the lower bound as the size of experimental units increases.
We present effective procedures to calculate regular normal cones and other related objects using quantifier elimination. This method of normal cone calculations is complementary to computing Lagrangians and it works best at points where the constraint qualifications fail and extra work for other methods becomes inevitable. This method also serves as a tool to calculate the regular co-derivative for semismooth* Newton methods. We list algorithms and their demonstrations of different use cases for this approach.
Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.
The primary objective of this work is to present an alternative approach aimed at reducing the dependency on labeled data. Our proposed method involves utilizing autoencoder pre-training within a face image recognition task with two step processes. Initially, an autoencoder is trained in an unsupervised manner using a substantial amount of unlabeled training dataset. Subsequently, a deep learning model is trained with initialized parameters from the pre-trained autoencoder. This deep learning training process is conducted in a supervised manner, employing relatively limited labeled training dataset. During evaluation phase, face image embeddings is generated as the output of deep neural network layer. Our training is executed on the CelebA dataset, while evaluation is performed using benchmark face recognition datasets such as Labeled Faces in the Wild (LFW) and YouTube Faces (YTF). Experimental results demonstrate that by initializing the deep neural network with pre-trained autoencoder parameters achieve comparable results to state-of-the-art methods.
Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data. To open the black-box of these deep learning models, post-hoc instance-level explanation methods have been proposed to understand GNN predictions. These methods seek to discover substructures that explain the prediction behavior of a trained GNN. In this paper, we show analytically that for a large class of explanation tasks, conventional approaches, which are based on the principle of graph information bottleneck (GIB), admit trivial solutions that do not align with the notion of explainability. Instead, we argue that a modified GIB principle may be used to avoid the aforementioned trivial solutions. We further introduce a novel factorized explanation model with theoretical performance guarantees. The modified GIB is used to analyze the structural properties of the proposed factorized explainer. We conduct extensive experiments on both synthetic and real-world datasets to validate the effectiveness of our proposed factorized explainer.
Bayesian optimization (BO) offers an elegant approach for efficiently optimizing black-box functions. However, acquisition criteria demand their own challenging inner-optimization, which can induce significant overhead. Many practical BO methods, particularly in high dimension, eschew a formal, continuous optimization of the acquisition function and instead search discretely over a finite set of space-filling candidates. Here, we propose to use candidates which lie on the boundary of the Voronoi tessellation of the current design points, so they are equidistant to two or more of them. We discuss strategies for efficient implementation by directly sampling the Voronoi boundary without explicitly generating the tessellation, thus accommodating large designs in high dimension. On a battery of test problems optimized via Gaussian processes with expected improvement, our proposed approach significantly improves the execution time of a multi-start continuous search without a loss in accuracy.
Mutual information between two random variables is a well-studied notion, whose understanding is fairly complete. Mutual information between one random variable and a pair of other random variables, however, is a far more involved notion. Specifically, Shannon's mutual information does not capture fine-grained interactions between those three variables, resulting in limited insights in complex systems. To capture these fine-grained interactions, in 2010 Williams and Beer proposed to decompose this mutual information to information atoms, called unique, redundant, and synergistic, and proposed several operational axioms that these atoms must satisfy. In spite of numerous efforts, a general formula which satisfies these axioms has yet to be found. Inspired by Judea Pearl's do-calculus, we resolve this open problem by introducing the do-operation, an operation over the variable system which sets a certain marginal to a desired value, which is distinct from any existing approaches. Using this operation, we provide the first explicit formula for calculating the information atoms so that Williams and Beer's axioms are satisfied, as well as additional properties from subsequent studies in the field.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.