In this paper, we outline a new proposal for communicating scientific debate to policymakers and other stakeholders in circumstances where there is substantial disagreement within the scientific literature. In those circumstances, it seems important to provide policy makers both with a useful, balanced summary that is representative of opinion in the field large, and to transparently communicate the actual evidence-base. To this end, we propose the compilation of argument maps through a collective intelligence process; these maps are then given to a wide sample of the relevant research community for evaluation and summary opinion in an IGM style IGM style poll (see igmchicago.org), which provides a representative view of opinion on the issue at stake within the wider scientific community. Policymakers then receive these two artefacts (map and poll) as their expert advice. Such a process would help overcome the resource limitations of the traditional expert advice process, while also providing greater balance by drawing on the expertise of researchers beyond the leading proponents of particular theories within a field. And, the actual evidence base would be transparent. In this paper, we present a pilot project stepping through the map building component of such a policy advice scheme. We detail process, products, and issues encountered by implementing in the OVA (Online Visualisation of Argument tool, ova.arg-tech.org) an argument map with sample evidence from the behavioural literature on communicating probabilities, as a central issue within pandemic.
In order for agents in multi-agent systems (MAS) to be safe, they need to take into account the risks posed by the actions of other agents. However, the dominant paradigm in game theory (GT) assumes that agents are not affected by risk from other agents and only strive to maximise their expected utility. For example, in hybrid human-AI driving systems, it is necessary to limit large deviations in reward resulting from car crashes. Although there are equilibrium concepts in game theory that take into account risk aversion, they either assume that agents are risk-neutral with respect to the uncertainty caused by the actions of other agents, or they are not guaranteed to exist. We introduce a new GT-based Risk-Averse Equilibrium (RAE) that always produces a solution that minimises the potential variance in reward accounting for the strategy of other agents. Theoretically and empirically, we show RAE shares many properties with a Nash Equilibrium (NE), establishing convergence properties and generalising to risk-dominant NE in certain cases. To tackle large-scale problems, we extend RAE to the PSRO multi-agent reinforcement learning (MARL) framework. We empirically demonstrate the minimum reward variance benefits of RAE in matrix games with high-risk outcomes. Results on MARL experiments show RAE generalises to risk-dominant NE in a trust dilemma game and that it reduces instances of crashing by 7x in an autonomous driving setting versus the best performing baseline.
Markov Decision Process (MDP) presents a mathematical framework to formulate the learning processes of agents in reinforcement learning. MDP is limited by the Markovian assumption that a reward only depends on the immediate state and action. However, a reward sometimes depends on the history of states and actions, which may result in the decision process in a non-Markovian environment. In such environments, agents receive rewards via temporally-extended behaviors sparsely, and the learned policies may be similar. This leads the agents acquired with similar policies generally overfit to the given task and can not quickly adapt to perturbations of environments. To resolve this problem, this paper tries to learn the diverse policies from the history of state-action pairs under a non-Markovian environment, in which a policy dispersion scheme is designed for seeking diverse policy representation. Specifically, we first adopt a transformer-based method to learn policy embeddings. Then, we stack the policy embeddings to construct a dispersion matrix to induce a set of diverse policies. Finally, we prove that if the dispersion matrix is positive definite, the dispersed embeddings can effectively enlarge the disagreements across policies, yielding a diverse expression for the original policy embedding distribution. Experimental results show that this dispersion scheme can obtain more expressive diverse policies, which then derive more robust performance than recent learning baselines under various learning environments.
The online privacy and security of the disabled community is a complex field that has implications for every user who navigates web services. While many disciplines have separately researched the disabled population and their online privacy and security concerns, the overlap between the two is very high but under-researched. Moreover, a complex relationship exists between the disabled population and web services where the interaction depends on several web service developmental factors, including usability and accessibility. To this aid, we explored this intersection of privacy and security of web services as perceived by the disabled community through previous studies by conducting a detailed systematic literature review and analysis of 63 articles. Our findings encompassed several topics, including how the disabled population navigates around authentication interfaces, online privacy concerns, universal design practices, and how security methods such as CAPTCHAs can be improved to become more accessible and usable for people of all needs and abilities. We further discuss the gap in the current research, including solutions such as the universal implementation of inclusive privacy and security tools and protocols.
Internet-of-Things (IoT) devices are often used to transmit physical sensor data over digital wireless channels. Traditional Physical Layer Security (PLS)-based cryptography approaches rely on accurate channel estimation and information exchange for key generation, which irrevocably ties key quality with digital channel estimation quality. Recently, we proposed a new concept called Graph Layer Security (GLS), where digital keys are derived from physical sensor readings. The sensor readings between legitimate users are correlated through a common background infrastructure environment (e.g., a common water distribution network or electric grid). The challenge for GLS has been how to achieve distributed key generation. This paper presents a Federated multi-agent Deep reinforcement learning-assisted Distributed Key generation scheme (FD2K), which fully exploits the common features of physical dynamics to establish secret key between legitimate users. We present for the first time initial experimental results of GLS with federated learning, achieving considerable security performance in terms of key agreement rate (KAR), and key randomness.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.