亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning methods can not only detect false data injection attacks (FDIA) but also locate attacks of FDIA. Although adversarial false data injection attacks (AFDIA) based on deep learning vulnerabilities have been studied in the field of single-label FDIA detection, the adversarial attack and defense against multi-label FDIA locational detection are still not involved. To bridge this gap, this paper first explores the multi-label adversarial example attacks against multi-label FDIA locational detectors and proposes a general multi-label adversarial attack framework, namely muLti-labEl adverSarial falSe data injectiON attack (LESSON). The proposed LESSON attack framework includes three key designs, namely Perturbing State Variables, Tailored Loss Function Design, and Change of Variables, which can help find suitable multi-label adversarial perturbations within the physical constraints to circumvent both Bad Data Detection (BDD) and Neural Attack Location (NAL). Four typical LESSON attacks based on the proposed framework and two dimensions of attack objectives are examined, and the experimental results demonstrate the effectiveness of the proposed attack framework, posing serious and pressing security concerns in smart grids.

相關內容

Large Language models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities, where a LLM makes predictions for a given test input together with a few input-output pairs (demonstrations). Nevertheless, the inclusion of demonstrations leads to a quadratic increase in the computational overhead of the self-attention mechanism. Existing solutions attempt to distill lengthy demonstrations into compact vectors. However, they often require task-specific retraining or compromise LLM's in-context learning performance. To mitigate these challenges, we present Meta dEmonstratioN Distillation (MEND), where a language model learns to distill any lengthy demonstrations into vectors without retraining for a new downstream task. We exploit the knowledge distillation to enhance alignment between MEND and LLM, achieving both efficiency and effectiveness simultaneously. MEND is endowed with the meta-knowledge of distilling demonstrations through a two-stage training process, which includes meta-distillation pretraining and fine-tuning. Comprehensive evaluations across seven diverse ICL task partitions using decoder-only (GPT-2) and encoder-decoder (T5) attest to MEND's prowess. It not only matches but often outperforms the Vanilla ICL as well as other state-of-the-art distillation models, while significantly reducing the computational demands. This innovation promises enhanced scalability and efficiency for the practical deployment of large language models

Tool learning aims to extend the capabilities of large language models (LLMs) with external tools. A major challenge in tool learning is how to support a large number of tools, including unseen tools. To address this challenge, previous studies have proposed retrieving suitable tools for the LLM based on the user query. However, previously proposed methods do not consider the differences between seen and unseen tools, nor do they take the hierarchy of the tool library into account, which may lead to suboptimal performance for tool retrieval. Therefore, to address the aforementioned issues, we propose ToolRerank, an adaptive and hierarchy-aware reranking method for tool retrieval to further refine the retrieval results. Specifically, our proposed ToolRerank includes Adaptive Truncation, which truncates the retrieval results related to seen and unseen tools at different positions, and Hierarchy-Aware Reranking, which makes retrieval results more concentrated for single-tool queries and more diverse for multi-tool queries. Experimental results show that ToolRerank can improve the quality of the retrieval results, leading to better execution results generated by the LLM.

Imitation learning has shown great potential for enabling robots to acquire complex manipulation behaviors. However, these algorithms suffer from high sample complexity in long-horizon tasks, where compounding errors accumulate over the task horizons. We present PRIME (PRimitive-based IMitation with data Efficiency), a behavior primitive-based framework designed for improving the data efficiency of imitation learning. PRIME scaffolds robot tasks by decomposing task demonstrations into primitive sequences, followed by learning a high-level control policy to sequence primitives through imitation learning. Our experiments demonstrate that PRIME achieves a significant performance improvement in multi-stage manipulation tasks, with 10-34% higher success rates in simulation over state-of-the-art baselines and 20-48% on physical hardware.

Deep learning has achieved remarkable success in graph-related tasks, yet this accomplishment heavily relies on large-scale high-quality annotated datasets. However, acquiring such datasets can be cost-prohibitive, leading to the practical use of labels obtained from economically efficient sources such as web searches and user tags. Unfortunately, these labels often come with noise, compromising the generalization performance of deep networks. To tackle this challenge and enhance the robustness of deep learning models against label noise in graph-based tasks, we propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE). The core idea of ERASE is to learn representations with error tolerance by maximizing coding rate reduction. Particularly, we introduce a decoupled label propagation method for learning representations. Before training, noisy labels are pre-corrected through structural denoising. During training, ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience, which significantly improves the generalization performance in node classification. The proposed method allows us to more effectively withstand errors caused by mislabeled nodes, thereby strengthening the robustness of deep networks in handling noisy graph data. Extensive experimental results show that our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability. Codes are released at //github.com/eraseai/erase.

Prompt learning has emerged as a valuable technique in enhancing vision-language models (VLMs) such as CLIP for downstream tasks in specific domains. Existing work mainly focuses on designing various learning forms of prompts, neglecting the potential of prompts as effective distillers for learning from larger teacher models. In this paper, we introduce an unsupervised domain prompt distillation framework, which aims to transfer the knowledge of a larger teacher model to a lightweight target model through prompt-driven imitation using unlabeled domain images. Specifically, our framework consists of two distinct stages. In the initial stage, we pre-train a large CLIP teacher model using domain (few-shot) labels. After pre-training, we leverage the unique decoupled-modality characteristics of CLIP by pre-computing and storing the text features as class vectors only once through the teacher text encoder. In the subsequent stage, the stored class vectors are shared across teacher and student image encoders for calculating the predicted logits. Further, we align the logits of both the teacher and student models via KL divergence, encouraging the student image encoder to generate similar probability distributions to the teacher through the learnable prompts. The proposed prompt distillation process eliminates the reliance on labeled data, enabling the algorithm to leverage a vast amount of unlabeled images within the domain. Finally, the well-trained student image encoders and pre-stored text features (class vectors) are utilized for inference. To our best knowledge, we are the first to (1) perform unsupervised domain-specific prompt-driven knowledge distillation for CLIP, and (2) establish a practical pre-storing mechanism of text features as shared class vectors between teacher and student. Extensive experiments on 11 datasets demonstrate the effectiveness of our method.

Amidst task-specific learning-based control synthesis frameworks that achieve impressive empirical results, a unified framework that systematically constructs an optimal policy for sufficiently solving a general notion of a task is absent. Hence, we propose a theoretical framework for a task-centered control synthesis leveraging two critical ideas: 1) oracle-guided policy optimization for the non-limiting integration of sub-optimal task-based priors to guide the policy optimization and 2) task-vital multimodality to break down solving a task into executing a sequence of behavioral modes. The proposed approach results in highly agile parkour and diving on a 16-DoF dynamic bipedal robot. The obtained policy advances indefinitely on a track, performing leaps and jumps of varying lengths and heights for the parkour task. Corresponding to the dive task, the policy demonstrates front, back, and side flips from various initial heights. Finally, we introduce a novel latent mode space reachability analysis to study our policies' versatility and generalization by computing a feasible mode set function through which we certify a set of failure-free modes for our policy to perform at any given state.

ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: domain-adaptive tokenization, domain-adaptive continued pretraining, model alignment with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our evaluations demonstrate that domain-adaptive pretraining of language models, can lead to superior performance in domain related downstream tasks compared to their base LLaMA2 counterparts, without degradations in generic capabilities. In particular, our largest model, ChipNeMo-70B, outperforms the highly capable GPT-4 on two of our use cases, namely engineering assistant chatbot and EDA scripts generation, while exhibiting competitive performance on bug summarization and analysis. These results underscore the potential of domain-specific customization for enhancing the effectiveness of large language models in specialized applications.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司