亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a multiple-splitting projection test (MPT) for one-sample mean vectors in high-dimensional settings. The idea of projection test is to project high-dimensional samples to a 1-dimensional space using an optimal projection direction such that traditional tests can be carried out with projected samples. However, estimation of the optimal projection direction has not been systematically studied in literature. In this work, we bridge the gap by proposing a consistent estimation via regularized quadratic optimization. To retain type I error rate, we adopt a data-splitting strategy when constructing test statistics. To mitigate the power loss due to data-splitting, we further propose a test via multiple splits to enhance the testing power. We show that the $p$-values resulted from multiple splits are exchangeable. Unlike existing methods which tend to conservatively combine dependent $p$-values, we develop an exact level $\alpha$ test that explicitly utilizes the exchangeability structure to achieve better power. Numerical studies show that the proposed test well retains the type I error rate and is more powerful than state-of-the-art tests.

相關內容

We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the convergence to the optimal policy. In this paper, in order to overcome the limitation of existing algorithms, we propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability. The uniform-PAC guarantee is the strongest possible guarantee for reinforcement learning in the literature, which can directly imply both PAC and high probability regret bounds, making our algorithm superior to all existing algorithms with linear function approximation. At the core of our algorithm is a novel minimax value function estimator and a multi-level partition scheme to select the training samples from historical observations. Both of these techniques are new and of independent interest.

We investigate multiple testing and variable selection using the Least Angle Regression (LARS) algorithm in high dimensions under the assumption of Gaussian noise. LARS is known to produce a piecewise affine solution path with change points referred to as the knots of the LARS path. The key to our results is an expression in closed form of the exact joint law of a $K$-tuple of knots conditional on the variables selected by LARS, namely the so-called post-selection joint law of the LARS knots. Numerical experiments demonstrate the perfect fit of our findings. This paper makes three main contributions. First, we build testing procedures on variables entering the model along the LARS path in the general design case when the noise level can be unknown. These testing procedures are referred to as the Generalized $t$-Spacing tests (GtSt) and we prove that they have an exact non-asymptotic level (i.e., the Type I error is exactly controlled). This extends work of (Taylor et al., 2014) where the spacing test works for consecutive knots and known variance. Second, we introduce a new exact multiple false negatives test after model selection in the general design case when the noise level may be unknown. We prove that this testing procedure has exact non-asymptotic level for general design and unknown noise level. Third, we give an exact control of the false discovery rate under orthogonal design assumption. Monte Carlo simulations and a real data experiment are provided to illustrate our results in this case. Of independent interest, we introduce an equivalent formulation of the LARS algorithm based on a recursive function.

This paper proposes a general two directional simultaneous inference (TOSI) framework for high-dimensional models with a manifest variable or latent variable structure, for example, high-dimensional mean models, high-dimensional sparse regression models, and high-dimensional latent factors models. TOSI performs simultaneous inference on a set of parameters from two directions, one to test whether the assumed zero parameters indeed are zeros and one to test whether exist zeros in the parameter set of nonzeros. As a result, we can exactly identify whether the parameters are zeros, thereby keeping the data structure fully and parsimoniously expressed. We theoretically prove that the proposed TOSI method asymptotically controls the Type I error at the prespecified significance level and that the testing power converges to one. Simulations are conducted to examine the performance of the proposed method in finite sample situations and two real datasets are analyzed. The results show that the TOSI method is more predictive and has more interpretable estimators than existing methods.

Multiple imputation (MI) inference handles missing data by imputing the missing values $m$ times, and then combining the results from the $m$ complete-data analyses. However, the existing method for combining likelihood ratio tests (LRTs) has multiple defects: (i) the combined test statistic can be negative, but its null distribution is approximated by an $F$-distribution; (ii) it is not invariant to re-parametrization; (iii) it fails to ensure monotonic power owing to its use of an inconsistent estimator of the fraction of missing information (FMI) under the alternative hypothesis; and (iv) it requires nontrivial access to the LRT statistic as a function of parameters instead of data sets. We show, using both theoretical derivations and empirical investigations, that essentially all of these problems can be straightforwardly addressed if we are willing to perform an additional LRT by stacking the $m$ completed data sets as one big completed data set. This enables users to implement the MI LRT without modifying the complete-data procedure. A particularly intriguing finding is that the FMI can be estimated consistently by an LRT statistic for testing whether the $m$ completed data sets can be regarded effectively as samples coming from a common model. Practical guidelines are provided based on an extensive comparison of existing MI tests. Issues related to nuisance parameters are also discussed.

The purpose of this article is to develop machinery to study the capacity of deep neural networks (DNNs) to approximate high-dimensional functions. In particular, we show that DNNs have the expressive power to overcome the curse of dimensionality in the approximation of a large class of functions. More precisely, we prove that these functions can be approximated by DNNs on compact sets such that the number of parameters necessary to represent the approximating DNNs grows at most polynomially in the reciprocal $1/\varepsilon$ of the approximation accuracy $\varepsilon>0$ and in the input dimension $d\in \mathbb{N} =\{1,2,3,\dots\}$. To this end, we introduce certain approximation spaces, consisting of sequences of functions that can be efficiently approximated by DNNs. We then establish closure properties which we combine with known and new bounds on the number of parameters necessary to approximate locally Lipschitz continuous functions, maximum functions, and product functions by DNNs. The main result of this article demonstrates that DNNs have sufficient expressiveness to approximate certain sequences of functions which can be constructed by means of a finite number of compositions using locally Lipschitz continuous functions, maxima, and products without the curse of dimensionality.

In this paper, we study deep neural networks (DNNs) for solving high-dimensional evolution equations with oscillatory solutions. Different from deep least-squares methods that deal with time and space variables simultaneously, we propose a deep adaptive basis Galerkin (DABG) method which employs the spectral-Galerkin method for time variable by tensor-product basis for oscillatory solutions and the deep neural network method for high-dimensional space variables. The proposed method can lead to a linear system of differential equations having unknown DNNs that can be trained via the loss function. We establish a posterior estimates of the solution error which is bounded by the minimal loss function and the term $O(N^{-m})$, where $N$ is the number of basis functions and $m$ characterizes the regularity of the equation, and show that if the true solution is a Barron-type function, the error bound converges to zero as $M=O(N^p)$ approaches to infinity where $M$ is the width of the used networks and $p$ is a positive constant. Numerical examples including high-dimensional linear parabolic and hyperbolic equations, and nonlinear Allen-Cahn equation are presented to demonstrate the performance of the proposed DABG method is better than that of existing DNNs.

This paper deals with a special type of Lyapunov functions, namely the solution of Zubov's equation. Such a function can be used to characterize the domain of attraction for systems of ordinary differential equations. We derive and prove an integral form solution to Zubov's equation. For numerical computation, we develop two data-driven methods. One is based on the integration of an augmented system of differential equations; and the other one is based on deep learning. The former is effective for systems with a relatively low state space dimension and the latter is developed for high dimensional problems. The deep learning method is applied to a New England 10-generator power system model. We prove that a neural network approximation exists for the Lyapunov function of power systems such that the approximation error is a cubic polynomial of the number of generators. The error convergence rate as a function of n, the number of neurons, is proved.

We investigate online convex optimization in non-stationary environments and choose the \emph{dynamic regret} as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path-length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, we demonstrate that it is possible to further enhance the guarantee for some easy problem instances, particularly when online functions are smooth. Specifically, we propose novel online algorithms that can leverage smoothness and replace the dependence on $T$ in the dynamic regret by \emph{problem-dependent} quantities: the variation in gradients of loss functions, the cumulative loss of the comparator sequence, and the minimum of the previous two terms. These quantities are at most $\mathcal{O}(T)$ while could be much smaller in benign environments. Therefore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and meanwhile guarantee the same rate in the worst case. Notably, our algorithm requires only \emph{one} gradient per iteration, which shares the same gradient query complexity with the methods developed for optimizing the static regret. As a further application, we extend the results from the full-information setting to bandit convex optimization with two-point feedback and thereby attain the first problem-dependent dynamic regret for such bandit tasks.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

北京阿比特科技有限公司