亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a robust and efficient multigrid solver based on an exponential-fitting discretization for 2D H(curl) convection-diffusion problems. By leveraging an exponential identity, we characterize the kernel of H(curl) convection-diffusion problems and design a suitable hybrid smoother. This smoother incorporates a lexicographic Gauss-Seidel smoother within a downwind type and smoothing over an auxiliary problem, corresponding to H(grad) convection-diffusion problems for kernel correction. We analyze the convergence properties of the smoothers and the two-level method using local Fourier analysis (LFA). The performance of the algorithms demonstrates robustness in both convection-dominated and diffusion-dominated cases.

相關內容

Fitting's Heyting-valued logic and Heyting-valued modal logic have already been studied from an algebraic viewpoint. In addition to algebraic axiomatizations with the completeness of Fitting's Heyting-valued logic and Heyting-valued modal logic, both topological and coalgebraic dualities have also been developed for algebras of Fitting's Heyting-valued modal logic. Bitopological methods have recently been employed to investigate duality for Fitting's Heyting-valued logic. However, the concepts of bitopology and biVietoris coalgebras are conspicuously absent from the development of dualities for Fitting's many-valued modal logic. With this study, we try to bridge that gap. We develop a bitopological duality for algebras of Fitting's Heyting-valued modal logic. We construct a bi-Vietoris functor on the category $PBS_{\mathcal{L}}$ of $\mathcal{L}$-valued ($\mathcal{L}$ is a Heyting algebra) pairwise Boolean spaces. Finally, we obtain a dual equivalence between categories of biVietoris coalgebras and algebras of Fitting's Heyting-valued modal logic. As a result, we conclude that Fitting's many-valued modal logic is sound and complete with respect to the coalgebras of a biVietoris functor. We discuss the application of this coalgebraic approach to bitopological duality.

This article explores how the 'rules in use' from Ostrom's Institutional Analysis and Development Framework (IAD) can be developed as a context analysis approach for AI. AI risk assessment frameworks increasingly highlight the need to understand existing contexts. However, these approaches do not frequently connect with established institutional analysis scholarship. We outline a novel direction illustrated through a high-level example to understand how clinical oversight is potentially impacted by AI. Much current thinking regarding oversight for AI revolves around the idea of decision makers being in-the-loop and, thus, having capacity to intervene to prevent harm. However, our analysis finds that oversight is complex, frequently made by teams of professionals and relies upon explanation to elicit information. Professional bodies and liability also function as institutions of polycentric oversight. These are all impacted by the challenge of oversight of AI systems. The approach outlined has potential utility as a policy tool of context analysis aligned with the 'Govern and Map' functions of the National Institute of Standards and Technology (NIST) AI Risk Management Framework; however, further empirical research is needed. Our analysis illustrates the benefit of existing institutional analysis approaches in foregrounding team structures within oversight and, thus, in conceptions of 'human in the loop'.

Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.

In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for solving arbitrary dimensional global quasiperiodic systems. Based on the projection method (PM), IWFPM further utilizes the concentrated distribution of Fourier coefficients to filter out relevant spectral points using an irrational window. Moreover, a corresponding index-shift transform is designed to make the Fast Fourier Transform available. The corresponding error analysis on the function approximation level is also given. We apply IWFPM to 1D, 2D, and 3D quasiperiodic Schr\"odinger eigenproblems to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. Furthermore, the widespread existence of such spectral point distribution feature can endow IWFPM with significant potential for broader applications in quasiperiodic systems.

We derive the Alternating-Direction Implicit (ADI) method based on a commuting operator split and apply the results to the continuous time algebraic Lyapunov equation with low-rank constant term and approximate solution. Previously, it has been mandatory to start the low-rank ADI (LR-ADI) with an all-zero initial value. Our approach retains the known efficient iteration schemes of low-rank increments and residual to arbitrary low-rank initial values for the LR-ADI method. We further generalize some of the known properties of the LR-ADI for Lyapunov equations to larger classes of algorithms or problems. We investigate the performance of arbitrary initial values using two outer iterations in which LR-ADI is typically called. First, we solve an algebraic Riccati equation with the Newton method. Second, we solve a differential Riccati equation with a first-order Rosenbrock method. Numerical experiments confirm that the proposed new initial value of the alternating-directions implicit (ADI) can lead to a significant reduction in the total number of ADI steps, while also showing a 17% and 8x speed-up over the zero initial value for the two equation types, respectively.

Natural Language Inference (NLI) remains an important benchmark task for LLMs. NLI datasets are a springboard for transfer learning to other semantic tasks, and NLI models are standard tools for identifying the faithfulness of model-generated text. There are several large scale NLI datasets today, and models have improved greatly by hill-climbing on these collections. Yet their realistic performance on out-of-distribution/domain data is less well-understood. We explore the opportunity for synthetic high-quality datasets to adapt NLI models for zero-shot use in downstream applications across new and unseen text domains. We demonstrate a new approach for generating NLI data in diverse domains and lengths, so far not covered by existing training sets. The resulting examples have meaningful premises, the hypotheses are formed in creative ways rather than simple edits to a few premise tokens, and the labels have high accuracy. We show that models trained on this data ($685$K synthetic examples) have the best generalization to completely new downstream test settings. On the TRUE benchmark, a T5-small model trained with our data improves around $7\%$ on average compared to training on the best alternative dataset. The improvements are more pronounced for smaller models, while still meaningful on a T5 XXL model. We also demonstrate gains on test sets when in-domain training data is augmented with our domain-general synthetic data.

Weakly Supervised Semantic Segmentation (WSSS) employs weak supervision, such as image-level labels, to train the segmentation model. Despite the impressive achievement in recent WSSS methods, we identify that introducing weak labels with high mean Intersection of Union (mIoU) does not guarantee high segmentation performance. Existing studies have emphasized the importance of prioritizing precision and reducing noise to improve overall performance. In the same vein, we propose ORANDNet, an advanced ensemble approach tailored for WSSS. ORANDNet combines Class Activation Maps (CAMs) from two different classifiers to increase the precision of pseudo-masks (PMs). To further mitigate small noise in the PMs, we incorporate curriculum learning. This involves training the segmentation model initially with pairs of smaller-sized images and corresponding PMs, gradually transitioning to the original-sized pairs. By combining the original CAMs of ResNet-50 and ViT, we significantly improve the segmentation performance over the single-best model and the naive ensemble model, respectively. We further extend our ensemble method to CAMs from AMN (ResNet-like) and MCTformer (ViT-like) models, achieving performance benefits in advanced WSSS models. It highlights the potential of our ORANDNet as a final add-on module for WSSS models.

This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.

This paper considers both the least squares and quasi-maximum likelihood estimation for the recently proposed scalable ARMA model, a parametric infinite-order vector AR model, and their asymptotic normality is also established. It makes feasible the inference on this computationally efficient model, especially for economic and financial time series. An efficient block coordinate descent algorithm is further introduced to search for estimates, and a Bayesian information criterion with selection consistency is suggested for model selection. Simulation experiments are conducted to illustrate their finite sample performance, and a real application on six macroeconomic indicators illustrates the usefulness of the proposed methodology.

A non-linear complex system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic, as each provides only a partial view and much information is lost during data extraction. Combining multiple diagnostics also results in imperfect projections of the system's physics. By identifying hidden inter-correlations between diagnostics, we can leverage mutual support to fill in these gaps, but uncovering these inter-correlations analytically is too complex. We introduce a groundbreaking machine learning methodology to address this issue. Our multimodal approach generates super resolution data encompassing multiple physics phenomena, capturing detailed structural evolution and responses to perturbations previously unobservable. This methodology addresses a critical problem in fusion plasmas: the Edge Localized Mode (ELM), a plasma instability that can severely damage reactor walls. One method to stabilize ELM is using resonant magnetic perturbation to trigger magnetic islands. However, low spatial and temporal resolution of measurements limits the analysis of these magnetic islands due to their small size, rapid dynamics, and complex interactions within the plasma. With super-resolution diagnostics, we can experimentally verify theoretical models of magnetic islands for the first time, providing unprecedented insights into their role in ELM stabilization. This advancement aids in developing effective ELM suppression strategies for future fusion reactors like ITER and has broader applications, potentially revolutionizing diagnostics in fields such as astronomy, astrophysics, and medical imaging.

北京阿比特科技有限公司