Given an undirected graph $G=(V,E)$, a vertex $v\in V$ is edge-vertex (ev) dominated by an edge $e\in E$ if $v$ is either incident to $e$ or incident to an adjacent edge of $e$. A set $S^{ev}\subseteq E$ is an edge-vertex dominating set (referred to as ev-dominating set) of $G$ if every vertex of $G$ is ev-dominated by at least one edge of $S^{ev}$. The minimum cardinality of an ev-dominating set is the ev-domination number. The edge-vertex dominating set problem is to find a minimum ev-domination number. In this paper we prove that the ev-dominating set problem is {\tt NP-hard} on unit disk graphs. We also prove that this problem admits a polynomial-time approximation scheme on unit disk graphs. Finally, we give a simple 5-factor linear-time approximation algorithm.
We study FO+, a fragment of first-order logic on finite words, where monadic predicates can only appear positively. We show that there is an FO-definable language that is monotone in monadic predicates but not definable in FO+. This provides a simple proof that Lyndon's preservation theorem fails on finite structures. We lift this example language to finite graphs, thereby providing a new result of independent interest for FO-definable graph classes: negation might be needed even when the class is closed under addition of edges. We finally show that given a regular language of finite words, it is undecidable whether it is definable in FO+.
In network design problems, such as compact routing, the goal is to route packets between nodes using the (approximated) shortest paths. A desirable property of these routes is a small number of hops, which makes them more reliable, and reduces the transmission costs. Following the overwhelming success of stochastic tree embeddings for algorithmic design, Haeupler, Hershkowitz, and Zuzic (STOC'21) studied hop-constrained Ramsey-type metric embeddings into trees. Specifically, embedding $f:G(V,E)\rightarrow T$ has Ramsey hop-distortion $(t,M,\beta,h)$ (here $t,\beta,h\ge1$ and $M\subseteq V$) if $\forall u,v\in M$, $d_G^{(\beta\cdot h)}(u,v)\le d_T(u,v)\le t\cdot d_G^{(h)}(u,v)$. $t$ is called the distortion, $\beta$ is called the hop-stretch, and $d_G^{(h)}(u,v)$ denotes the minimum weight of a $u-v$ path with at most $h$ hops. Haeupler {\em et al.} constructed embedding where $M$ contains $1-\epsilon$ fraction of the vertices and $\beta=t=O(\frac{\log^2 n}{\epsilon})$. They used their embedding to obtain multiple bicriteria approximation algorithms for hop-constrained network design problems. In this paper, we first improve the Ramsey-type embedding to obtain parameters $t=\beta=\frac{\tilde{O}(\log n)}{\epsilon}$, and generalize it to arbitrary distortion parameter $t$ (in the cost of reducing the size of $M$). This embedding immediately implies polynomial improvements for all the approximation algorithms from Haeupler {\em et al.}. Further, we construct hop-constrained clan embeddings (where each vertex has multiple copies), and use them to construct bicriteria approximation algorithms for the group Steiner tree problem, matching the state of the art of the non constrained version. Finally, we use our embedding results to construct hop constrained distance oracles, distance labeling, and most prominently, the first hop constrained compact routing scheme with provable guarantees.
We give new decomposition theorems for classes of graphs that can be transduced in first-order logic from classes of sparse graphs -- more precisely, from classes of bounded expansion and from nowhere dense classes. In both cases, the decomposition takes the form of a single colored rooted tree of bounded depth where, in addition, there can be links between nodes that are not related in the tree. The constraint is that the structure formed by the tree and the links has to be sparse. Using the decomposition theorem for transductions of nowhere dense classes, we show that they admit low-shrubdepth covers of size $O(n^\varepsilon)$, where $n$ is the vertex count and $\varepsilon>0$ is any fixed~real. This solves an open problem posed by Gajarsk\'y et al. (ACM TOCL '20) and also by Bria\'nski et al. (SIDMA '21).
We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions. The zigzag process has the advantage of not requiring time discretization for implementation, and that each proposed bouncing event requires only one evaluation of partial derivative of the potential, while its convergence rate is dimension independent. Using these properties, we prove that the zigzag sampling algorithm achieves $\varepsilon$ error in chi-square divergence with a computational cost equivalent to $O\bigl(\kappa^2 d^\frac{1}{2}(\log\frac{1}{\varepsilon})^{\frac{3}{2}}\bigr)$ gradient evaluations in the regime $\kappa \ll \frac{d}{\log d}$ under a warm start assumption, where $\kappa$ is the condition number and $d$ is the dimension.
We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree $\Omega(n / \log n)$ in the Polynomial Calculus (over fields of characteristic $\ne 2$) and Sum-of-Squares proof systems, and exponential size in the bounded-depth Frege proof system. This resolves a question by Razborov asking whether the Lov\'asz-Schrijver proof system requires $n^\delta$ rounds to refute these formulas for some $\delta > 0$. The results are obtained by a worst-case to average-case reduction of these formulas relying on a topological embedding theorem which may be of independent interest.
A generalization of L{\"u}roth's theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
The spatial convolution layer which is widely used in the Graph Neural Networks (GNNs) aggregates the feature vector of each node with the feature vectors of its neighboring nodes. The GNN is not aware of the locations of the nodes in the global structure of the graph and when the local structures corresponding to different nodes are similar to each other, the convolution layer maps all those nodes to similar or same feature vectors in the continuous feature space. Therefore, the GNN cannot distinguish two graphs if their difference is not in their local structures. In addition, when the nodes are not labeled/attributed the convolution layers can fail to distinguish even different local structures. In this paper, we propose an effective solution to address this problem of the GNNs. The proposed approach leverages a spatial representation of the graph which makes the neural network aware of the differences between the nodes and also their locations in the graph. The spatial representation which is equivalent to a point-cloud representation of the graph is obtained by a graph embedding method. Using the proposed approach, the local feature extractor of the GNN distinguishes similar local structures in different locations of the graph and the GNN infers the topological structure of the graph from the spatial distribution of the locally extracted feature vectors. Moreover, the spatial representation is utilized to simplify the graph down-sampling problem. A new graph pooling method is proposed and it is shown that the proposed pooling method achieves competitive or better results in comparison with the state-of-the-art methods.
Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict "em what drugs are likely to target proteins involved with both diseases X and Y?" -- a query that requires reasoning about all possible proteins that {\em might} interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries -- a flexible but tractable subset of first-order logic -- on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. By performing logical operations within a low-dimensional embedding space, our approach achieves a time complexity that is linear in the number of query variables, compared to the exponential complexity required by a naive enumeration-based approach. We demonstrate the utility of this framework in two application studies on real-world datasets with millions of relations: predicting logical relationships in a network of drug-gene-disease interactions and in a graph-based representation of social interactions derived from a popular web forum.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.