亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

相關內容

In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using Size Weight and Power (SWaP) constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We propose a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for SWaP-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including Semantic Loop Closure (SLC), we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.

This study employs a uniform rectangular array (URA) sub-connected hybrid beamforming (SC-HBF) architecture to provide a novel self-interference (SI) suppression scheme in a full-duplex (FD) massive multiple-input multiple-output (mMIMO) system. Our primary objective is to mitigate the strong SI through the design of RF beamforming stages for uplink and downlink transmissions that utilize the spatial degrees of freedom provided due to the use of large array structures. We propose a non-constant modulus RF beamforming (NCM-BF-SIS) scheme that incorporates the gain controllers for both transmit (Tx) and receive (Rx) RF beamforming stages and optimizes the uplink and downlink beam directions jointly with gain controller coefficients. To solve this challenging non-convex optimization problem, we propose a swarm intelligence-based algorithmic solution that finds the optimal beam perturbations while also adjusting the Tx/Rx gain controllers to alleviate SI subject to the directivity degradation constraints for the beams. The data-driven analysis based on the measured SI channel in an anechoic chamber shows that the proposed NCM-BF-SIS scheme can suppress SI by around 80 dB in FD mMIMO systems.

In this paper, a type of novel projection-based, time-divided reduced order model (ROM) is proposed for dynamic fluid-structure interaction (FSI) problems, where spatial and temporal dimensions are partitioned as follows: spatially, each kind of variable is separated from others in terms of its attribution (fluid/structure), its category (velocity/pressure) and its component (horizontal/vertical); temporally, basis functions are deliberately adopted in small time windows tailored through extensive numerical trials. By the combination of space and time decompositions, the proposed ROM enables prolonged simulations under prescribed accuracy thresholds. Numerical experiments are carried out by means of a numerical comparison between the proposed ROM and corresponding full-order model (FOM) on solving a benchmark problem of FSI with a vibrating elastic beam in the fluid flow, where the representation of basis function sets on perturbation parameters is investigated as well. Extensive numerical results demonstrate the accuracy and efficiency of the proposed ROM. The developed numerical techniques are dimension-independent, which can be seamlessly extended to high dimensional FSI problems.

Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier. The source code and the experimental data for this paper are available in \url{//github.com/microsoft/NeuralInvariantRanker}.

We introduce fair-density parity-check (FDPC) codes targeting high-rate applications. In particular, we start with a base parity-check matrix $H_b$ of dimension $2 \sqrt{n} \times n$, where $n$ is the code block length, and the number of ones in each row and column of $H_b$ is equal to $\sqrt{n}$ and $2$, respectively. We propose a deterministic combinatorial method for picking the base matrix $H_b$, assuming $n=4t^2$ for some integer $t \geq 2$. We then extend this by obtaining permuted versions of $H_b$ (e.g., via random permutations of its columns) and stacking them on top of each other leading to codes of dimension $k \geq n-2s\sqrt{n}+s$, for some $s \geq 2$, referred to as order-$s$ FDPC codes. We propose methods to explicitly characterize and bound the weight distribution of the new codes and utilize them to derive union-type approximate upper bounds on their error probability under Maximum Likelihood (ML) decoding. For the binary erasure channel (BEC), we demonstrate that the approximate ML bound of FDPC codes closely follows the random coding upper bound (RCU) for a wide range of channel parameters. Also, remarkably, FDPC codes, under the low-complexity min-sum decoder, improve upon 5G-LDPC codes for transmission over the binary-input additive white Gaussian noise (B-AWGN) channel by almost 0.5dB (for $n=1024$, and rate $=0.878$). Furthermore, we propose a new decoder as a combination of weighted min-sum message-passing (MP) decoding algorithm together with a new progressive list (PL) decoding component, referred to as the MP-PL decoder, to further boost the performance of FDPC codes. This paper opens new avenues for a fresh investigation of new code constructions and decoding algorithms in high-rate regimes suitable for ultra-high throughput (high-frequency/optical) applications.

Diffusion models have enabled remarkably high-quality medical image generation, which can help mitigate the expenses of acquiring and annotating new images by supplementing small or imbalanced datasets, along with other applications. However, these are hampered by the challenge of enforcing global anatomical realism in generated images. To this end, we propose a diffusion model for anatomically-controlled medical image generation. Our model follows a multi-class anatomical segmentation mask at each sampling step and incorporates a \textit{random mask ablation} training algorithm, to enable conditioning on a selected combination of anatomical constraints while allowing flexibility in other anatomical areas. This also improves the network's learning of anatomical realism for the completely unconditional (unconstrained generation) case. Comparative evaluation on breast MRI and abdominal/neck-to-pelvis CT datasets demonstrates superior anatomical realism and input mask faithfulness over state-of-the-art models. We also offer an accessible codebase and release a dataset of generated paired breast MRIs. Our approach facilitates diverse applications, including pre-registered image generation, counterfactual scenarios, and others.

We propose a novel method for privacy-preserving deep neural networks (DNNs) with the Vision Transformer (ViT). The method allows us not only to train models and test with visually protected images but to also avoid the performance degradation caused from the use of encrypted images, whereas conventional methods cannot avoid the influence of image encryption. A domain adaptation method is used to efficiently fine-tune ViT with encrypted images. In experiments, the method is demonstrated to outperform conventional methods in an image classification task on the CIFAR-10 and ImageNet datasets in terms of classification accuracy.

This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Most existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel size. In this work, we propose a pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We design a content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighboring pixel information. We further introduce a pixel-adaptive non-uniform sampling strategy that implicitly discovers the difficult-to-restore regions present in the image and, in turn, performs fine-grained refinement in a progressive manner. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our approach performs favorably against the state-of-the-art deblurring algorithms.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司