Researchers, government bodies, and organizations have been repeatedly calling for a shift in the responsible AI community from general principles to tangible and operationalizable practices in mitigating the potential sociotechnical harms of AI. Frameworks like the NIST AI RMF embody an emerging consensus on recommended practices in operationalizing sociotechnical harm mitigation. However, private sector organizations currently lag far behind this emerging consensus. Implementation is sporadic and selective at best. At worst, it is ineffective and can risk serving as a misleading veneer of trustworthy processes, providing an appearance of legitimacy to substantively harmful practices. In this paper, we provide a foundation for a framework for evaluating where organizations sit relative to the emerging consensus on sociotechnical harm mitigation best practices: a flexible maturity model based on the NIST AI RMF.
Human-centered explainable AI (HCXAI) advocates for the integration of social aspects into AI explanations. Central to the HCXAI discourse is the Social Transparency (ST) framework, which aims to make the socio-organizational context of AI systems accessible to their users. In this work, we suggest extending the ST framework to address the risks of social misattributions in Large Language Models (LLMs), particularly in sensitive areas like mental health. In fact LLMs, which are remarkably capable of simulating roles and personas, may lead to mismatches between designers' intentions and users' perceptions of social attributes, risking to promote emotional manipulation and dangerous behaviors, cases of epistemic injustice, and unwarranted trust. To address these issues, we propose enhancing the ST framework with a fifth 'W-question' to clarify the specific social attributions assigned to LLMs by its designers and users. This addition aims to bridge the gap between LLM capabilities and user perceptions, promoting the ethically responsible development and use of LLM-based technology.
Reinforcement Learning-based Recommender Systems (RLRS) have shown promise across a spectrum of applications, from e-commerce platforms to streaming services. Yet, they grapple with challenges, notably in crafting reward functions and harnessing large pre-existing datasets within the RL framework. Recent advancements in offline RLRS provide a solution for how to address these two challenges. However, existing methods mainly rely on the transformer architecture, which, as sequence lengths increase, can introduce challenges associated with computational resources and training costs. Additionally, the prevalent methods employ fixed-length input trajectories, restricting their capacity to capture evolving user preferences. In this study, we introduce a new offline RLRS method to deal with the above problems. We reinterpret the RLRS challenge by modeling sequential decision-making as an inference task, leveraging adaptive masking configurations. This adaptive approach selectively masks input tokens, transforming the recommendation task into an inference challenge based on varying token subsets, thereby enhancing the agent's ability to infer across diverse trajectory lengths. Furthermore, we incorporate a multi-scale segmented retention mechanism that facilitates efficient modeling of long sequences, significantly enhancing computational efficiency. Our experimental analysis, conducted on both online simulator and offline datasets, clearly demonstrates the advantages of our proposed method.
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players' assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement -- which invites further research in the direction of cost-sharing in collaborative interactions.
Convolutional neural networks (CNNs) have achieved significant popularity, but their computational and memory intensity poses challenges for resource-constrained computing systems, particularly with the prerequisite of real-time performance. To release this burden, model compression has become an important research focus. Many approaches like quantization, pruning, early exit, and knowledge distillation have demonstrated the effect of reducing redundancy in neural networks. Upon closer examination, it becomes apparent that each approach capitalizes on its unique features to compress the neural network, and they can also exhibit complementary behavior when combined. To explore the interactions and reap the benefits from the complementary features, we propose the Chain of Compression, which works on the combinational sequence to apply these common techniques to compress the neural network. Validated on the image-based regression and classification networks across different data sets, our proposed Chain of Compression can significantly compress the computation cost by 100-1000 times with ignorable accuracy loss compared with the baseline model.
Nowadays, research into personalization has been focusing on explainability and fairness. Several approaches proposed in recent works are able to explain individual recommendations in a post-hoc manner or by explanation paths. However, explainability techniques applied to unfairness in recommendation have been limited to finding user/item features mostly related to biased recommendations. In this paper, we devised a novel algorithm that leverages counterfactuality methods to discover user unfairness explanations in the form of user-item interactions. In our counterfactual framework, interactions are represented as edges in a bipartite graph, with users and items as nodes. Our bipartite graph explainer perturbs the topological structure to find an altered version that minimizes the disparity in utility between the protected and unprotected demographic groups. Experiments on four real-world graphs coming from various domains showed that our method can systematically explain user unfairness on three state-of-the-art GNN-based recommendation models. Moreover, an empirical evaluation of the perturbed network uncovered relevant patterns that justify the nature of the unfairness discovered by the generated explanations. The source code and the preprocessed data sets are available at //github.com/jackmedda/RS-BGExplainer.
Instruction-tuned Large Language Models (LLMs) have exhibited impressive language understanding and the capacity to generate responses that follow specific prompts. However, due to the computational demands associated with training these models, their applications often adopt a zero-shot setting. In this paper, we evaluate the zero-shot performance of two publicly accessible LLMs, ChatGPT and OpenAssistant, in the context of six Computational Social Science classification tasks, while also investigating the effects of various prompting strategies. Our experiments investigate the impact of prompt complexity, including the effect of incorporating label definitions into the prompt; use of synonyms for label names; and the influence of integrating past memories during foundation model training. The findings indicate that in a zero-shot setting, current LLMs are unable to match the performance of smaller, fine-tuned baseline transformer models (such as BERT-large). Additionally, we find that different prompting strategies can significantly affect classification accuracy, with variations in accuracy and F1 scores exceeding 10\%.
Deep neural networks (DNNs) are notoriously vulnerable to adversarial attacks that place carefully crafted perturbations on normal examples to fool DNNs. To better understand such attacks, a characterization of the features carried by adversarial examples is needed. In this paper, we tackle this challenge by inspecting the subspaces of sample features through spectral analysis. We first empirically show that the features of either clean signals or adversarial perturbations are redundant and span in low-dimensional linear subspaces respectively with minimal overlap, and the classical low-dimensional subspace projection can suppress perturbation features out of the subspace of clean signals. This makes it possible for DNNs to learn a subspace where only features of clean signals exist while those of perturbations are discarded, which can facilitate the distinction of adversarial examples. To prevent the residual perturbations that is inevitable in subspace learning, we propose an independence criterion to disentangle clean signals from perturbations. Experimental results show that the proposed strategy enables the model to inherently suppress adversaries, which not only boosts model robustness but also motivates new directions of effective adversarial defense.
Recently neural radiance fields (NeRF) have been widely exploited as 3D representations for dense simultaneous localization and mapping (SLAM). Despite their notable successes in surface modeling and novel view synthesis, existing NeRF-based methods are hindered by their computationally intensive and time-consuming volume rendering pipeline. This paper presents an efficient dense RGB-D SLAM system, i.e., CG-SLAM, based on a novel uncertainty-aware 3D Gaussian field with high consistency and geometric stability. Through an in-depth analysis of Gaussian Splatting, we propose several techniques to construct a consistent and stable 3D Gaussian field suitable for tracking and mapping. Additionally, a novel depth uncertainty model is proposed to ensure the selection of valuable Gaussian primitives during optimization, thereby improving tracking efficiency and accuracy. Experiments on various datasets demonstrate that CG-SLAM achieves superior tracking and mapping performance with a notable tracking speed of up to 15 Hz. We will make our source code publicly available. Project page: //zju3dv.github.io/cg-slam.
Training high-accuracy 3D detectors necessitates massive labeled 3D annotations with 7 degree-of-freedom, which is laborious and time-consuming. Therefore, the form of point annotations is proposed to offer significant prospects for practical applications in 3D detection, which is not only more accessible and less expensive but also provides strong spatial information for object localization.In this paper, we empirically discover that it is non-trivial to merely adapt Point-DETR to its 3D form, encountering two main bottlenecks: 1) it fails to encode strong 3D prior into the model, and 2) it generates low-quality pseudo labels in distant regions due to the extreme sparsity of LiDAR points. To overcome these challenges, we introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection, designed to fully capitalize on point-wise supervision within a constrained instance-wise annotation budget.Different from Point-DETR which encodes 3D positional information solely through a point encoder, we propose an explicit positional query initialization strategy to enhance the positional prior. Considering the low quality of pseudo labels at distant regions produced by the teacher model, we enhance the detector's perception by incorporating dense imagery data through a novel Cross-Modal Deformable RoI Fusion (D-RoI).Moreover, an innovative point-guided self-supervised learning technique is proposed to allow for fully exploiting point priors, even in student models.Extensive experiments on representative nuScenes dataset demonstrate our Point-DETR3D obtains significant improvements compared to previous works. Notably, with only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.