Recent efforts have aimed to improve AI machines in legal case matching by integrating legal domain knowledge. However, successful legal case matching requires the tacit knowledge of legal practitioners, which is difficult to verbalize and encode into machines. This emphasizes the crucial role of involving legal practitioners in high-stakes legal case matching. To address this, we propose a collaborative matching framework called Co-Matching, which encourages both the machine and the legal practitioner to participate in the matching process, integrating tacit knowledge. Unlike existing methods that rely solely on the machine, Co-Matching allows both the legal practitioner and the machine to determine key sentences and then combine them probabilistically. Co-Matching introduces a method called ProtoEM to estimate human decision uncertainty, facilitating the probabilistic combination. Experimental results demonstrate that Co-Matching consistently outperforms existing legal case matching methods, delivering significant performance improvements over human- and machine-based matching in isolation (on average, +5.51% and +8.71%, respectively). Further analysis shows that Co-Matching also ensures better human-machine collaboration effectiveness. Our study represents a pioneering effort in human-machine collaboration for the matching task, marking a milestone for future collaborative matching studies.
Automatic anomaly detection based on visual cues holds practical significance in various domains, such as manufacturing and product quality assessment. This paper introduces a new conditional anomaly detection problem, which involves identifying anomalies in a query image by comparing it to a reference shape. To address this challenge, we have created a large dataset, BrokenChairs-180K, consisting of around 180K images, with diverse anomalies, geometries, and textures paired with 8,143 reference 3D shapes. To tackle this task, we have proposed a novel transformer-based approach that explicitly learns the correspondence between the query image and reference 3D shape via feature alignment and leverages a customized attention mechanism for anomaly detection. Our approach has been rigorously evaluated through comprehensive experiments, serving as a benchmark for future research in this domain.
Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical justifications, and cannot disentangle the usefulness of defending methods from the computational limitation of attacking methods. In this work, we propose to view the problem as an inverse problem, enabling us to theoretically, quantitatively, and systematically evaluate the data reconstruction problem. On various defense methods, we derived the algorithmic upper bound and the matching (in feature dimension and model width) information-theoretical lower bound on the reconstruction error for two-layer neural networks. To complement the theoretical results and investigate the utility-privacy trade-off, we defined a natural evaluation metric of the defense methods with similar utility loss among the strongest attacks. We further propose a strong reconstruction attack that helps update some previous understanding of the strength of defense methods under our proposed evaluation metric.
Computing systems have been evolving to be more pervasive, heterogeneous, and dynamic. An increasing number of emerging domains now rely on diverse edge to cloud continuum where the execution of applications often spans various tiers of systems with significantly heterogeneous computational capabilities. Resources in each tier are often handled in isolation due to scalability and privacy concerns. However, better overall resource utilization could be achieved if different tiers of systems had the means to communicate their computational capabilities. In this paper, we propose H-EYE, a universal approach to holistically capture diverse computational characteristics of edge-cloud systems with arbitrary topologies and to manage the assignment of tasks to the computational resources with the whole continuum in the scope. Our proposed work introduces two significant innovations: (1) We present a multi-layer, graph-based hardware (HW) representation and a modular performance modeling interface that could capture interactions and inference between different computing and communication resources in the system at desired level of detail. (2) We introduce a novel orchestrator mechanism that leverages the graph-based HW representation to hierarchically locate target devices that a given set of tasks could be mapped to. Orchestrator provides isolation for various device groups and allows hierarchical abstraction to scalably find mappings that satisfy system deadlines. The orchestrator internally relies on a novel traverser that takes shared resource slowdown into account. We demonstrate the utility and flexibility of H-EYE on edge-server systems that are deployed on the field in two different disciplines, improving up to 47% latency over baselines with less than 2% scheduling overhead
Video generation is a challenging yet pivotal task in various industries, such as gaming, e-commerce, and advertising. One significant unresolved aspect within T2V is the effective visualization of text within generated videos. Despite the progress achieved in Text-to-Video~(T2V) generation, current methods still cannot effectively visualize texts in videos directly, as they mainly focus on summarizing semantic scene information, understanding, and depicting actions. While recent advances in image-level visual text generation show promise, transitioning these techniques into the video domain faces problems, notably in preserving textual fidelity and motion coherence. In this paper, we propose an innovative approach termed Text-Animator for visual text video generation. Text-Animator contains a text embedding injection module to precisely depict the structures of visual text in generated videos. Besides, we develop a camera control module and a text refinement module to improve the stability of generated visual text by controlling the camera movement as well as the motion of visualized text. Quantitative and qualitative experimental results demonstrate the superiority of our approach to the accuracy of generated visual text over state-of-the-art video generation methods. The project page can be found at //laulampaul.github.io/text-animator.html.
Automatically evaluating the quality of responses in open-domain dialogue systems is a challenging but crucial task. Current evaluation metrics often fail to align with human judgments, especially when assessing responses that are grammatically correct. To address this issue, we propose a novel metric, called CausalScore, which assesses the relevance of responses by measuring the causal strength between dialogue histories and responses. The causal strength is estimated by utilizing both unconditional dependence and conditional dependencies from the dialogue history to responses. We compare our metric with the existing competitive metrics in terms of their alignment with human judgements. Our experimental results demonstrate that CausalScore significantly surpasses existing state-of-the-art metrics by aligning better with human judgements. Additionally, we collect a new dialogue dataset CGDIALOG+ with human-annotated causal relations and a set of pairwise human judgements to facilitate the development of future automatic metrics.
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at //github.com/Jikai0Wang/OPT-Tree.
Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.
Deep learning have achieved promising results on a wide spectrum of AI applications. Larger datasets and models consistently yield better performance. However, we generally spend longer training time on more computation and communication. In this survey, we aim to provide a clear sketch about the optimizations for large-scale deep learning with regard to the model accuracy and model efficiency. We investigate algorithms that are most commonly used for optimizing, elaborate the debatable topic of generalization gap arises in large-batch training, and review the SOTA strategies in addressing the communication overhead and reducing the memory footprints.
With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.