亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Object detectors do not work well when domains largely differ between training and testing data. To overcome this domain gap in object detection without requiring expensive annotations, we consider two problem settings: semi-supervised domain generalizable object detection (SS-DGOD) and weakly-supervised DGOD (WS-DGOD). In contrast to the conventional domain generalization for object detection that requires labeled data from multiple domains, SS-DGOD and WS-DGOD require labeled data only from one domain and unlabeled or weakly-labeled data from multiple domains for training. In this paper, we show that object detectors can be effectively trained on the two settings with the same Mean Teacher learning framework, where a student network is trained with pseudo-labels output from a teacher on the unlabeled or weakly-labeled data. We provide novel interpretations of why the Mean Teacher learning framework works well on the two settings in terms of the relationships between the generalization gap and flat minima in parameter space. On the basis of the interpretations, we also propose incorporating a simple regularization method into the Mean Teacher learning framework to find flatter minima. The experimental results demonstrate that the regularization leads to flatter minima and boosts the performance of the detectors trained with the Mean Teacher learning framework on the two settings. They also indicate that those detectors significantly outperform the state-of-the-art methods.

相關內容

Autonomous driving has achieved significant milestones in research and development over the last two decades. There is increasing interest in the field as the deployment of autonomous vehicles (AVs) promises safer and more ecologically friendly transportation systems. With the rapid progress in computationally powerful artificial intelligence (AI) techniques, AVs can sense their environment with high precision, make safe real-time decisions, and operate reliably without human intervention. However, intelligent decision-making in such vehicles is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, AVs must also explain their AI-guided decision-making process in order to be regulatory compliant across many jurisdictions. Our study sheds comprehensive light on the development of explainable artificial intelligence (XAI) approaches for AVs. In particular, we make the following contributions. First, we provide a thorough overview of the state-of-the-art and emerging approaches for XAI-based autonomous driving. We then propose a conceptual framework that considers the essential elements for explainable end-to-end autonomous driving. Finally, we present XAI-based prospective directions and emerging paradigms for future directions that hold promise for enhancing transparency, trustworthiness, and societal acceptance of AVs.

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.

Privacy-preserving AI algorithms are widely adopted in various domains, but the lack of transparency might pose accountability issues. While auditing algorithms can address this issue, machine-based audit approaches are often costly and time-consuming. Herd audit, on the other hand, offers an alternative solution by harnessing collective intelligence. Nevertheless, the presence of epistemic disparity among auditors, resulting in varying levels of expertise and access to knowledge, may impact audit performance. An effective herd audit will establish a credible accountability threat for algorithm developers, incentivizing them to uphold their claims. In this study, our objective is to develop a systematic framework that examines the impact of herd audits on algorithm developers using the Stackelberg game approach. The optimal strategy for auditors emphasizes the importance of easy access to relevant information, as it increases the auditors' confidence in the audit process. Similarly, the optimal choice for developers suggests that herd audit is viable when auditors face lower costs in acquiring knowledge. By enhancing transparency and accountability, herd audit contributes to the responsible development of privacy-preserving algorithms.

PageRank is a widely used centrality measure that "ranks" vertices in a graph by considering the connections and their importance. In this report, we first introduce one of the most efficient GPU implementations of Static PageRank, which recomputes PageRank scores from scratch. It uses a synchronous pull-based atomics-free PageRank computation, with the low and high in-degree vertices being partitioned and processed by two separate kernels. Next, we present our GPU implementation of incrementally expanding (and contracting) Dynamic Frontier with Pruning (DF-P) PageRank, which processes only a subset of vertices likely to change ranks. It is based on Static PageRank, and uses an additional partitioning between low and high out-degree vertices for incremental expansion of the set of affected vertices with two additional kernels. On a server with an NVIDIA A100 GPU, our Static PageRank outperforms Hornet and Gunrock's PageRank implementations by 31x and 5.9x respectively. On top of the above, DF-P PageRank outperforms Static PageRank by 2.1x on real-world dynamic graphs, and by 3.1x on large static graphs with random batch updates.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司