Advancements in large language models (LLMs) are poised to spark a proliferation of LLM-powered user experiences. In product teams, designers are often tasked with crafting user experiences that align with user needs. To involve designers and leverage their user-centered perspectives to create effective and responsible LLM-powered products, we introduce the practice of designerly adaptation for engaging with LLMs as an adaptable design material. We first identify key characteristics of designerly adaptation through a formative study with designers experienced in designing for LLM-powered products (N=12). These characteristics are 1) have a low technical barrier to entry, 2) leverage designers' unique perspectives bridging users and technology, and 3) encourage model tinkering. Based on this characterization, we build Canvil, a Figma widget that operationalizes designerly adaptation. Canvil supports structured authoring of system prompts to adapt LLM behavior, testing of adapted models on diverse user inputs, and integration of model outputs into interface designs. We use Canvil as a technology probe in a group-based design study (6 groups, N=17) to investigate the implications of integrating designerly adaptation into design workflows. We find that designers are able to iteratively tinker with different adaptation approaches and reason about interface affordances to enhance end-user interaction with LLMs. Furthermore, designers identified promising collaborative workflows for designerly adaptation. Our work opens new avenues for collaborative processes and tools that foreground designers' user-centered expertise in the crafting and deployment of LLM-powered user experiences.
The availability of Large Language Models (LLMs) which can generate code, has made it possible to create tools that improve developer productivity. Integrated development environments or IDEs which developers use to write software are often used as an interface to interact with LLMs. Although many such tools have been released, almost all of them focus on general-purpose programming languages. Domain-specific languages, such as those crucial for IT automation, have not received much attention. Ansible is one such YAML-based IT automation-specific language. Red Hat Ansible Lightspeed with IBM Watson Code Assistant, further referred to as Ansible Lightspeed, is an LLM-based service designed explicitly for natural language to Ansible code generation. In this paper, we describe the design and implementation of the Ansible Lightspeed service and analyze feedback from thousands of real users. We examine diverse performance indicators, classified according to both immediate and extended utilization patterns along with user sentiments. The analysis shows that the user acceptance rate of Ansible Lightspeed suggestions is higher than comparable tools that are more general and not specific to a programming language. This remains true even after we use much more stringent criteria for what is considered an accepted model suggestion, discarding suggestions which were heavily edited after being accepted. The relatively high acceptance rate results in higher-than-expected user retention and generally positive user feedback. This paper provides insights on how a comparatively small, dedicated model performs on a domain-specific language and more importantly, how it is received by users.
Tool-augmented Large Language Models (TALM) are known to enhance the skillset of large language models (LLM), thereby, leading to their improved reasoning abilities across many tasks. While, TALMs have been successfully employed in different question-answering benchmarks, their efficacy on complex mathematical reasoning benchmarks, and the potential complimentary benefits offered by tools for knowledge retrieval and mathematical equation solving, are open research questions. In this work, we present MATHSENSEI, a tool-augmented large language model for mathematical reasoning. Augmented with tools for knowledge retrieval (Bing Web Search), program execution (Python), and symbolic equation solving (Wolfram-Alpha), we study the complimentary benefits of these tools through evaluations on mathematical reasoning datasets. We perform exhaustive ablations on MATH,a popular dataset for evaluating mathematical reasoning on diverse mathematical disciplines. We also conduct experiments involving well-known tool planners to study the impact of tool sequencing on the model performance. MATHSENSEI achieves 13.5% better accuracy over gpt-3.5-turbo with chain-of-thought on the MATH dataset. We further observe that TALMs are not as effective for simpler math word problems (in GSM-8k), and the benefit increases as the complexity and required knowledge increases (progressively over AQuA, MMLU-Math, and higher level complex questions in MATH). The code and data are available at //github.com/Debrup-61/MathSensei.
With the fast development of large language models (LLMs), LLM-driven Web Agents (Web Agents for short) have obtained tons of attention due to their superior capability where LLMs serve as the core part of making decisions like the human brain equipped with multiple web tools to actively interact with external deployed websites. As uncountable Web Agents have been released and such LLM systems are experiencing rapid development and drawing closer to widespread deployment in our daily lives, an essential and pressing question arises: "Are these Web Agents secure?". In this paper, we introduce a novel threat, WIPI, that indirectly controls Web Agent to execute malicious instructions embedded in publicly accessible webpages. To launch a successful WIPI works in a black-box environment. This methodology focuses on the form and content of indirect instructions within external webpages, enhancing the efficiency and stealthiness of the attack. To evaluate the effectiveness of the proposed methodology, we conducted extensive experiments using 7 plugin-based ChatGPT Web Agents, 8 Web GPTs, and 3 different open-source Web Agents. The results reveal that our methodology achieves an average attack success rate (ASR) exceeding 90% even in pure black-box scenarios. Moreover, through an ablation study examining various user prefix instructions, we demonstrated that the WIPI exhibits strong robustness, maintaining high performance across diverse prefix instructions.
Product embedding serves as a cornerstone for a wide range of applications in eCommerce. The product embedding learned from multiple modalities shows significant improvement over that from a single modality, since different modalities provide complementary information. However, some modalities are more informatively dominant than others. How to teach a model to learn embedding from different modalities without neglecting information from the less dominant modality is challenging. We present an image-text embedding model (ITEm), an unsupervised learning method that is designed to better attend to image and text modalities. We extend BERT by (1) learning an embedding from text and image without knowing the regions of interest; (2) training a global representation to predict masked words and to construct masked image patches without their individual representations. We evaluate the pre-trained ITEm on two tasks: the search for extremely similar products and the prediction of product categories, showing substantial gains compared to strong baseline models.
Federated learning (FL) facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10\% higher accuracy than local training on constrained devices with ~58\% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
Prompt-based interfaces for Large Language Models (LLMs) have made prototyping and building AI-powered applications easier than ever before. However, identifying potential harms that may arise from AI applications remains a challenge, particularly during prompt-based prototyping. To address this, we present Farsight, a novel in situ interactive tool that helps people identify potential harms from the AI applications they are prototyping. Based on a user's prompt, Farsight highlights news articles about relevant AI incidents and allows users to explore and edit LLM-generated use cases, stakeholders, and harms. We report design insights from a co-design study with 10 AI prototypers and findings from a user study with 42 AI prototypers. After using Farsight, AI prototypers in our user study are better able to independently identify potential harms associated with a prompt and find our tool more useful and usable than existing resources. Their qualitative feedback also highlights that Farsight encourages them to focus on end-users and think beyond immediate harms. We discuss these findings and reflect on their implications for designing AI prototyping experiences that meaningfully engage with AI harms. Farsight is publicly accessible at: //PAIR-code.github.io/farsight.
We introduce UFO, an innovative UI-Focused agent to fulfill user requests tailored to applications on Windows OS, harnessing the capabilities of GPT-Vision. UFO employs a dual-agent framework to meticulously observe and analyze the graphical user interface (GUI) and control information of Windows applications. This enables the agent to seamlessly navigate and operate within individual applications and across them to fulfill user requests, even when spanning multiple applications. The framework incorporates a control interaction module, facilitating action grounding without human intervention and enabling fully automated execution. Consequently, UFO transforms arduous and time-consuming processes into simple tasks achievable solely through natural language commands. We conducted testing of UFO across 9 popular Windows applications, encompassing a variety of scenarios reflective of users' daily usage. The results, derived from both quantitative metrics and real-case studies, underscore the superior effectiveness of UFO in fulfilling user requests. To the best of our knowledge, UFO stands as the first UI agent specifically tailored for task completion within the Windows OS environment. The open-source code for UFO is available on //github.com/microsoft/UFO.
Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.
Graphical User Interface (GUI) agents are designed to automate complex tasks on digital devices, such as smartphones and desktops. Most existing GUI agents interact with the environment through extracted structured data, which can be notably lengthy (e.g., HTML) and occasionally inaccessible (e.g., on desktops). To alleviate this issue, we propose a novel visual GUI agent -- SeeClick, which only relies on screenshots for task automation. In our preliminary study, we have discovered a key challenge in developing visual GUI agents: GUI grounding -- the capacity to accurately locate screen elements based on instructions. To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data. Along with the efforts above, we have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments. After pre-training, SeeClick demonstrates significant improvement in ScreenSpot over various baselines. Moreover, comprehensive evaluations on three widely used benchmarks consistently support our finding that advancements in GUI grounding directly correlate with enhanced performance in downstream GUI agent tasks. The model, data and code are available at //github.com/njucckevin/SeeClick.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.