The Internet of Medical Things (IoMT) has revolutionized the healthcare industry by enabling physiological data collection using sensors, which are transmitted to remote servers for continuous analysis by physicians and healthcare professionals. This technology offers numerous benefits, including early disease detection and automatic medication for patients with chronic illnesses. However, IoMT technology also presents significant security risks, such as violating patient privacy or exposing sensitive data to interception attacks due to wireless communication, which could be fatal for the patient. Additionally, traditional security measures, such as cryptography, are challenging to implement in medical equipment due to the heterogeneous communication and their limited computation, storage, and energy capacity. These protection methods are also ineffective against new and zero-day attacks. It is essential to adopt robust security measures to ensure data integrity, confidentiality, and availability during data collection, transmission, storage, and processing. In this context, using Intrusion Detection Systems (IDS) based on Machine Learning (ML) can bring a complementary security solution adapted to the unique characteristics of IoMT systems. Therefore, this paper investigates how IDS based on ML can address security and privacy issues in IoMT systems. First, the generic three-layer architecture of IoMT is provided, and the security requirements of IoMT systems are outlined. Then, the various threats that can affect IoMT security are identified, and the advantages, disadvantages, methods, and datasets used in each solution based on ML at the three layers that make up IoMT are presented. Finally, the paper discusses the challenges and limitations of applying IDS based on ML at each layer of IoMT, which can serve as a future research direction.
Visual-based defect detection is a crucial but challenging task in industrial quality control. Most mainstream methods rely on large amounts of existing or related domain data as auxiliary information. However, in actual industrial production, there are often multi-batch, low-volume manufacturing scenarios with rapidly changing task demands, making it difficult to obtain sufficient and diverse defect data. This paper proposes a parallel solution that uses a human-machine knowledge hybrid augmentation method to help the model extract unknown important features. Specifically, by incorporating experts' knowledge of abnormality to create data with rich features, positions, sizes, and backgrounds, we can quickly accumulate an amount of data from scratch and provide it to the model as prior knowledge for few-data learning. The proposed method was evaluated on the magnetic tile dataset and achieved F1-scores of 60.73%, 70.82%, 77.09%, and 82.81% when using 2, 5, 10, and 15 training images, respectively. Compared to the traditional augmentation method's F1-score of 64.59%, the proposed method achieved an 18.22% increase in the best result, demonstrating its feasibility and effectiveness in few-data industrial defect detection.
Mobile phones and other electronic gadgets or devices have aided in collecting data without the need for data entry. This paper will specifically focus on Mobile health data. Mobile health data use mobile devices to gather clinical health data and track patient vitals in real-time. Our study is aimed to give decisions for small or big sports teams on whether one athlete good fit or not for a particular game with the compare several machine learning algorithms to predict human behavior and health using the data collected from mobile devices and sensors placed on patients. In this study, we have obtained the dataset from a similar study done on mhealth. The dataset contains vital signs recordings of ten volunteers from different backgrounds. They had to perform several physical activities with a sensor placed on their bodies. Our study used 5 machine learning algorithms (XGBoost, Naive Bayes, Decision Tree, Random Forest, and Logistic Regression) to analyze and predict human health behavior. XGBoost performed better compared to the other machine learning algorithms and achieved 95.2% accuracy, 99.5% in sensitivity, 99.5% in specificity, and 99.66% in F1 score. Our research indicated a promising future in mhealth being used to predict human behavior and further research and exploration need to be done for it to be available for commercial use specifically in the sports industry.
Rapidly developing intelligent healthcare systems are underpinned by Sixth Generation (6G) connectivity, ubiquitous Internet of Things (IoT), and Deep Learning (DL) techniques. This portends a future where 6G powers the Internet of Medical Things (IoMT) with seamless, large-scale, and real-time connectivity amongst entities. This article proposes a Convolutional Neural Network (CNN) based Federated Learning framework that combines Secure Multi-Party Computation (SMPC) based aggregation and Encrypted Inference methods, all within the context of 6G and IoMT. We consider multiple hospitals with clusters of mixed IoMT and edge devices that encrypt locally trained models. Subsequently, each hospital sends the encrypted local models for SMPC-based encrypted aggregation in the cloud, which generates the encrypted global model. Ultimately, the encrypted global model is returned to each edge server for more localized training, further improving model accuracy. Moreover, hospitals can perform encrypted inference on their edge servers or the cloud while maintaining data and model privacy. Multiple experiments were conducted with varying CNN models and datasets to evaluate the proposed framework's performance.
Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning maintenance engineers of impending failure or identifying current system health conditions. However, single operators may not have sufficiently large fleets of systems or component units to collect sufficient data to develop data-driven algorithms. Collecting a satisfactory quantity of fault patterns for safety-critical systems is particularly difficult due to the rarity of faults. Federated learning (FL) has emerged as a promising solution to leverage datasets from multiple operators to train a decentralized asset fault diagnosis model while maintaining data confidentiality. However, there are still considerable obstacles to overcome when it comes to optimizing the federation strategy without leaking sensitive data and addressing the issue of client dataset heterogeneity. This is particularly prevalent in fault diagnosis applications due to the high diversity of operating conditions and system configurations. To address these two challenges, we propose a novel clustering-based FL algorithm where clients are clustered for federating based on dataset similarity. To quantify dataset similarity between clients without explicitly sharing data, each client sets aside a local test dataset and evaluates the other clients' model prediction accuracy and uncertainty on this test dataset. Clients are then clustered for FL based on relative prediction accuracy and uncertainty.
Insect population numbers and biodiversity have been rapidly declining with time, and monitoring these trends has become increasingly important for conservation measures to be effectively implemented. But monitoring methods are often invasive, time and resource intense, and prone to various biases. Many insect species produce characteristic sounds that can easily be detected and recorded without large cost or effort. Using deep learning methods, insect sounds from field recordings could be automatically detected and classified to monitor biodiversity and species distribution ranges. We implement this using recently published datasets of insect sounds (Orthoptera and Cicadidae) and machine learning methods and evaluate their potential for acoustic insect monitoring. We compare the performance of the conventional spectrogram-based audio representation against LEAF, a new adaptive and waveform-based frontend. LEAF achieved better classification performance than the mel-spectrogram frontend by adapting its feature extraction parameters during training. This result is encouraging for future implementations of deep learning technology for automatic insect sound recognition, especially as larger datasets become available.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.