There are settings in which reproducibility of ranked lists is desirable, such as when extracting a subset of an evolving document corpus for downstream research tasks or in domains such as patent retrieval or in medical systematic reviews, with high reproducibility expectations. However, as global term statistics change when documents change or are added to a corpus, queries using typical ranked retrieval models are not even reproducible for the parts of the document corpus that have not changed. Thus, Boolean retrieval frequently remains the mechanism of choice in such settings. We present a hybrid retrieval system combining Lucene for fast retrieval with a column-store-based retrieval system maintaining a versioned and time-stamped index. The latter component allows re-execution of previously posed queries resulting in the same ranked list and further allows for time-travel queries over evolving collection, as web archives, while maintaining the original ranking. Thus, retrieval results in evolving document collections are fully reproducible even when document collections and thus term statistics change.
To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-the-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
Understanding relations arising out of interactions among entities can be very difficult, and predicting them is even more challenging. This problem has many applications in various fields, such as financial networks and e-commerce. These relations can involve much more complexities than just involving more than two entities. One such scenario is evolving recursive relations between multiple entities, and so far, this is still an open problem. This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive. We pose the problem in the framework of representation learning of temporal hypergraphs that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction-based decoder to model the occurrence of interaction events. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
Forecasting relations between entities is paramount in the current era of data and AI. However, it is often overlooked that real-world relationships are inherently directional, involve more than two entities, and can change with time. In this paper, we provide a comprehensive solution to the problem of forecasting directional relations in a general setting, where relations are higher-order, i.e., directed hyperedges in a hypergraph. This problem has not been previously explored in the existing literature. The primary challenge in solving this problem is that the number of possible hyperedges is exponential in the number of nodes at each event time. To overcome this, we propose a sequential generative approach that segments the forecasting process into multiple stages, each contingent upon the preceding stages, thereby reducing the search space involved in predictions of hyperedges. The first stage involves a temporal point process-based node event forecasting module that identifies the subset of nodes involved in an event. The second stage is a candidate generation module that predicts hyperedge sizes and adjacency vectors for nodes observing events. The final stage is a directed hyperedge predictor that identifies the truth by searching over the set of candidate hyperedges. To validate the effectiveness of our model, we compiled five datasets and conducted an extensive empirical study to assess each downstream task. Our proposed method achieves a performance gain of 32\% and 41\% compared to the state-of-the-art pairwise and hyperedge event forecasting models, respectively, for the event type prediction.
Photoacoustic imaging (PAI) suffers from inherent limitations that can degrade the quality of reconstructed results, such as noise, artifacts and incomplete data acquisition caused by sparse sampling or partial array detection. In this study, we proposed a new optimization method for both two-dimensional (2D) and three-dimensional (3D) PAI reconstruction results, called the regularized iteration method with shape prior. The shape prior is a probability matrix derived from the reconstruction results of multiple sets of random partial array signals in a computational imaging system using any reconstruction algorithm, such as Delay-and-Sum (DAS) and Back-Projection (BP). In the probability matrix, high-probability locations indicate high consistency among multiple reconstruction results at those positions, suggesting a high likelihood of representing the true imaging results. In contrast, low-probability locations indicate higher randomness, leaning more towards noise or artifacts. As a shape prior, this probability matrix guides the iteration and regularization of the entire array signal reconstruction results using the original reconstruction algorithm (the same algorithm for processing random partial array signals). The method takes advantage of the property that the similarity of the object to be imitated is higher than that of noise or artifact in the results reconstructed by multiple sets of random partial array signals of the entire imaging system. The probability matrix is taken as a prerequisite for improving the original reconstruction results, and the optimizer is used to further iterate the imaging results to remove noise and artifacts and improve the imaging fidelity. Especially in the case involving sparse view which brings more artifacts, the effect is remarkable. Simulation and real experiments have both demonstrated the superiority of this method.
Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model. However, existing unlearning methods for Large Language Models (LLMs) face a critical challenge: they rely solely on negative feedback to suppress responses related to the forget set, which often results in nonsensical or inconsistent outputs, diminishing model utility and posing potential privacy risks. To address this limitation, we propose a novel approach called Alternate Preference Optimization (AltPO), which combines negative feedback with in-domain positive feedback on the forget set. Additionally, we introduce new evaluation metrics to assess the quality of responses related to the forget set. Extensive experiments show that our approach not only enables effective unlearning but also avoids undesirable model behaviors while maintaining overall model performance. Our implementation can be found at //github.com/molereddy/Alternate-Preference-Optimization.
Existing methods have demonstrated effective performance on a single degradation type. In practical applications, however, the degradation is often unknown, and the mismatch between the model and the degradation will result in a severe performance drop. In this paper, we propose an all-in-one image restoration network that tackles multiple degradations. Due to the heterogeneous nature of different types of degradations, it is difficult to process multiple degradations in a single network. To this end, we propose to learn a neural degradation representation (NDR) that captures the underlying characteristics of various degradations. The learned NDR decomposes different types of degradations adaptively, similar to a neural dictionary that represents basic degradation components. Subsequently, we develop a degradation query module and a degradation injection module to effectively recognize and utilize the specific degradation based on NDR, enabling the all-in-one restoration ability for multiple degradations. Moreover, we propose a bidirectional optimization strategy to effectively drive NDR to learn the degradation representation by optimizing the degradation and restoration processes alternately. Comprehensive experiments on representative types of degradations (including noise, haze, rain, and downsampling) demonstrate the effectiveness and generalization capability of our method.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.