亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quadruped robots demonstrate robust and agile movements in various terrains; however, their navigation autonomy is still insufficient. One of the challenges is that the motion capabilities of the quadruped robot are anisotropic along different directions, which significantly affects the safety of quadruped robot navigation. This paper proposes a navigation framework that takes into account the motion anisotropy of quadruped robots including kinodynamic trajectory generation, nonlinear trajectory optimization, and nonlinear model predictive control. In simulation and real robot tests, we demonstrate that our motion-anisotropy-aware navigation framework could: (1) generate more efficient trajectories and realize more agile quadruped navigation; (2) significantly improve the navigation safety in challenging scenarios. The implementation is realized as an open-source package at //github.com/ZWT006/agile_navigation.

相關內容

機(ji)(ji)器(qi)人(ren)(英(ying)語:Robot)包(bao)括一切模擬人(ren)類行為或思(si)想與模擬其他生(sheng)物的(de)機(ji)(ji)械(如機(ji)(ji)器(qi)狗,機(ji)(ji)器(qi)貓等)。狹義(yi)上(shang)對機(ji)(ji)器(qi)人(ren)的(de)定(ding)義(yi)還(huan)有很多分類法及(ji)爭議,有些電腦程序甚至(zhi)也被稱為機(ji)(ji)器(qi)人(ren)。在(zai)當代(dai)工業中,機(ji)(ji)器(qi)人(ren)指能(neng)自動運行任(ren)務的(de)人(ren)造機(ji)(ji)器(qi)設(she)備(bei),用以(yi)取(qu)代(dai)或協助人(ren)類工作(zuo),一般會是(shi)機(ji)(ji)電設(she)備(bei),由計算(suan)機(ji)(ji)程序或是(shi)電子電路控制。

知識薈萃

精品(pin)入(ru)門(men)和進階教(jiao)程、論文和代(dai)碼(ma)整理(li)等

更多

查看相關VIP內容、論文、資訊等

In clinical practice, tri-modal medical image fusion, compared to the existing dual-modal technique, can provide a more comprehensive view of the lesions, aiding physicians in evaluating the disease's shape, location, and biological activity. However, due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited, leading to sub-optimal fusion performance, and affecting the depth of image analysis by the physician. Thus, there is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information. Although current image processing methods can effectively address image fusion and super-resolution individually, solving both problems synchronously remains extremely challenging. In this paper, we propose TFS-Diff, a simultaneously realize tri-modal medical image fusion and super-resolution model. Specially, TFS-Diff is based on the diffusion model generation of a random iterative denoising process. We also develop a simple objective function and the proposed fusion super-resolution loss, effectively evaluates the uncertainty in the fusion and ensures the stability of the optimization process. And the channel attention module is proposed to effectively integrate key information from different modalities for clinical diagnosis, avoiding information loss caused by multiple image processing. Extensive experiments on public Harvard datasets show that TFS-Diff significantly surpass the existing state-of-the-art methods in both quantitative and visual evaluations. The source code will be available at GitHub.

Recently, tensor low-rank representation (TLRR) has become a popular tool for tensor data recovery and clustering, due to its empirical success and theoretical guarantees. However, existing TLRR methods consider Gaussian or gross sparse noise, inevitably leading to performance degradation when the tensor data are contaminated by outliers or sample-specific corruptions. This paper develops an outlier-robust tensor low-rank representation (OR-TLRR) method that provides outlier detection and tensor data clustering simultaneously based on the t-SVD framework. For tensor observations with arbitrary outlier corruptions, OR-TLRR has provable performance guarantee for exactly recovering the row space of clean data and detecting outliers under mild conditions. Moreover, an extension of OR-TLRR is proposed to handle the case when parts of the data are missing. Finally, extensive experimental results on synthetic and real data demonstrate the effectiveness of the proposed algorithms. We release our code at //github.com/twugithub/2024-AISTATS-ORTLRR.

Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird's eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly, it improves local 3D semantic occupancy predictions by hybrid fusion of (i) semantic and occupancy task features, and (ii) compressed orthogonal attention features shared between vehicles. Additionally, due to the lack of a collaborative perception dataset designed for semantic occupancy prediction, we augment a current collaborative perception dataset to include 3D collaborative semantic occupancy labels for a more robust evaluation. The experimental findings highlight that: (i) our collaborative semantic occupancy predictions excel above the results from single vehicles by over 30%, and (ii) models anchored on semantic occupancy outpace state-of-the-art collaborative 3D detection techniques in subsequent perception applications, showcasing enhanced accuracy and enriched semantic-awareness in road environments.

Robot swarms hold immense potential for performing complex tasks far beyond the capabilities of individual robots. However, the challenge in unleashing this potential is the robots' limited sensory capabilities, which hinder their ability to detect and adapt to unknown obstacles in real-time. To overcome this limitation, we introduce a novel robot swarm control method with an indirect obstacle detector using a smoothed particle hydrodynamics (SPH) model. The indirect obstacle detector can predict the collision with an obstacle and its collision point solely from the robot's velocity information. This approach enables the swarm to effectively and accurately navigate environments without the need for explicit obstacle detection, significantly enhancing their operational robustness and efficiency. Our method's superiority is quantitatively validated through a comparative analysis, showcasing its significant navigation and pattern formation improvements under obstacle-unaware conditions.

As machine learning applications continue to evolve, the demand for efficient hardware accelerators, specifically tailored for deep neural networks (DNNs), becomes increasingly vital. In this paper, we propose a configurable memory hierarchy framework tailored for per layer adaptive memory access patterns of DNNs. The hierarchy requests data on-demand from the off-chip memory to provide it to the accelerator's compute units. The objective is to strike an optimized balance between minimizing the required memory capacity and maintaining high accelerator performance. The framework is characterized by its configurability, allowing the creation of a tailored memory hierarchy with up to five levels. Furthermore, the framework incorporates an optional shift register as final level to increase the flexibility of the memory management process. A comprehensive loop-nest analysis of DNN layers shows that the framework can efficiently execute the access patterns of most loop unrolls. Synthesis results and a case study of the DNN accelerator UltraTrail indicate a possible reduction in chip area of up to 62.2% as smaller memory modules can be used. At the same time, the performance loss can be minimized to 2.4%.

When a robot executes a task, it is necessary to model the relationship among its body, target objects, tools, and environment, and to control its body to realize the target state. However, it is difficult to model them using classical methods if the relationship is complex. In addition, when the relationship changes with time, it is necessary to deal with the temporal changes of the model. In this study, we have developed Deep Predictive Model with Parametric Bias (DPMPB) as a more human-like adaptive intelligence to deal with these modeling difficulties and temporal model changes. We categorize and summarize the theory of DPMPB and various task experiments on the actual robots, and discuss the effectiveness of DPMPB.

Tactile sensing has become a popular sensing modality for robot manipulators, due to the promise of providing robots with the ability to measure the rich contact information that gets transmitted through its sense of touch. Among the diverse range of information accessible from tactile sensors, torques transmitted from the grasped object to the fingers through extrinsic environmental contact may be particularly important for tasks such as object insertion. However, tactile torque estimation has received relatively little attention when compared to other sensing modalities, such as force, texture, or slip identification. In this work, we introduce the notion of the Tactile Dipole Moment, which we use to estimate tilt torques from gel-based visuotactile sensors. This method does not rely on deep learning, sensor-specific mechanical, or optical modeling, and instead takes inspiration from electromechanics to analyze the vector field produced from 2D marker displacements. Despite the simplicity of our technique, we demonstrate its ability to provide accurate torque readings over two different tactile sensors and three object geometries, and highlight its practicality for the task of USB stick insertion with a compliant robot arm. These results suggest that simple analytical calculations based on dipole moments can sufficiently extract physical quantities from visuotactile sensors.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

北京阿比特科技有限公司