亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given two strings of length $n$ over alphabet $\Sigma$, and an upper bound $k$ on their edit distance, the algorithm of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88) computes the unweighted string edit distance in $\mathcal{O}(n+k^2)$ time. Till date, it remains the fastest algorithm for exact edit distance computation, and it is optimal under the Strong Exponential Hypothesis (STOC'15). Over the years, this result has inspired many developments, including fast approximation algorithms for string edit distance as well as similar $\tilde{\mathcal{O}}(n+$poly$(k))$-time algorithms for generalizations to tree and Dyck edit distances. Surprisingly, all these results hold only for unweighted instances. While unweighted edit distance is theoretically fundamental, almost all real-world applications require weighted edit distance, where different weights are assigned to different edit operations and may vary with the characters being edited. Given a weight function $w: \Sigma \cup \{\varepsilon \}\times \Sigma \cup \{\varepsilon \} \rightarrow \mathbb{R}_{\ge 0}$ (such that $w(a,a)=0$ and $w(a,b)\ge 1$ for all $a,b\in \Sigma \cup \{\varepsilon\}$ with $a\ne b$), the goal is to find an alignment that minimizes the total weight of edits. Except for the vanilla $\mathcal{O}(n^2)$-time dynamic-programming algorithm and its almost trivial $\mathcal{O}(nk)$-time implementation, none of the aforementioned developments on the unweighted edit distance apply to the weighted variant. In this paper, we propose the first $\mathcal{O}(n+$poly$(k))$-time algorithm that computes weighted string edit distance exactly, thus bridging a fundamental gap between our understanding of unweighted and weighted edit distance. We then generalize this result to weighted tree and Dyck edit distances, which lead to a deterministic algorithm that improves upon the previous work for unweighted tree edit distance.

相關內容

Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $D$, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.

Learning to integrate non-linear equations from highly resolved direct numerical simulations (DNSs) has seen recent interest for reducing the computational load for fluid simulations. Here, we focus on determining a flux-limiter for shock capturing methods. Focusing on flux limiters provides a specific plug-and-play component for existing numerical methods. Since their introduction, an array of flux limiters has been designed. Using the coarse-grained Burgers' equation, we show that flux-limiters may be rank-ordered in terms of their log-error relative to high-resolution data. We then develop theory to find an optimal flux-limiter and present flux-limiters that outperform others tested for integrating Burgers' equation on lattices with $2\times$, $3\times$, $4\times$, and $8\times$ coarse-grainings. We train a continuous piecewise linear limiter by minimizing the mean-squared misfit to 6-grid point segments of high-resolution data, averaged over all segments. While flux limiters are generally designed to have an output of $\phi(r) = 1$ at a flux ratio of $r = 1$, our limiters are not bound by this rule, and yet produce a smaller error than standard limiters. We find that our machine learned limiters have distinctive features that may provide new rules-of-thumb for the development of improved limiters. Additionally, we use our theory to learn flux-limiters that outperform standard limiters across a range of values (as opposed to at a specific fixed value) of coarse-graining, number of discretized bins, and diffusion parameter. This demonstrates the ability to produce flux limiters that should be more broadly useful than standard limiters for general applications.

We present a simple and efficient acceleration technique for an arbitrary method for computing the Euclidean projection of a point onto a convex polytope, defined as the convex hull of a finite number of points, in the case when the number of points in the polytope is much greater than the dimension of the space. The technique consists in applying any given method to a "small" subpolytope of the original polytope and gradually shifting it, till the projection of the given point onto the subpolytope coincides with its projection onto the original polytope. The results of numerical experiments demonstrate the high efficiency of the proposed acceleration technique. In particular, they show that the reduction of computation time increases with an increase of the number of points in the polytope and is proportional to this number for some methods. In the second part of the paper, we also discuss a straightforward extension of the proposed acceleration technique to the case of arbitrary methods for computing the distance between two convex polytopes, defined as the convex hulls of finite sets of points.

Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in $\mathbb{R}^d$ that approximate the rewards in a bandit or RL with a uniform error of $\varepsilon$, searching for an $O(\varepsilon)$-optimal action requires pulling at least $\Omega(\exp(d))$ queries. Furthermore, Lattimore et al. (2020) show that a degraded $O(\varepsilon\sqrt{d})$-optimal solution can be learned within $\operatorname{poly}(d/\varepsilon)$ queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the $\varepsilon\sqrt{d}$ barrier. In this paper, we address this question by showing that algorithms can obtain $O(\varepsilon)$-optimal actions by querying $O(\varepsilon^{-s}d^s)$ actions, where $s$ is the sparsity parameter, removing the $\exp(d)$-dependence. We then establish information-theoretical lower bounds, i.e., $\Omega(\exp(s))$, to show that our upper bound on sample complexity is nearly tight if one demands an error $ O(s^{\delta}\varepsilon)$ for $0<\delta<1$. For $\delta\geq 1$, we further show that $\operatorname{poly}(s/\varepsilon)$ queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.

In the context of simulation-based methods, multiple challenges arise, two of which are considered in this work. As a first challenge, problems including time-dependent phenomena with complex domain deformations, potentially even with changes in the domain topology, need to be tackled appropriately. The second challenge arises when computational resources and the time for evaluating the model become critical in so-called many query scenarios for parametric problems. For example, these problems occur in optimization, uncertainty quantification (UQ), or automatic control and using highly resolved full-order models (FOMs) may become impractical. To address both types of complexity, we present a novel projection-based model order reduction (MOR) approach for deforming domain problems that takes advantage of the time-continuous space-time formulation. We apply it to two examples that are relevant for engineering or biomedical applications and conduct an error and performance analysis. In both cases, we are able to drastically reduce the computational expense for a model evaluation and, at the same time, to maintain an adequate accuracy level. All in all, this work indicates the effectiveness of the presented MOR approach for deforming domain problems taking advantage of a time-continuous space-time setting.

For any $\varepsilon>0$, we give a simple, deterministic $(4+\varepsilon)$-approximation algorithm for the Nash social welfare (NSW) problem under submodular valuations. The previous best approximation factor was $380$ via a randomized algorithm. We also consider the asymmetric variant of the problem, where the objective is to maximize the weighted geometric mean of agents' valuations, and give an $(\omega + 2 +\varepsilon) e$-approximation if the ratio between the largest weight and the average weight is at most $\omega$. We also show that the $1/2$-EFX envy-freeness property can be attained simultaneously with a constant-factor approximation. More precisely, we can find an allocation in polynomial time which is both $1/2$-EFX and a $(8+\varepsilon)$-approximation to the symmetric NSW problem under submodular valuations. The previous best approximation factor under $1/2$-EFX was linear in the number of agents.

Over the past few years, there has been a significant amount of research focused on studying the ReLU activation function, with the aim of achieving neural network convergence through over-parametrization. However, recent developments in the field of Large Language Models (LLMs) have sparked interest in the use of exponential activation functions, specifically in the attention mechanism. Mathematically, we define the neural function $F: \mathbb{R}^{d \times m} \times \mathbb{R}^d \rightarrow \mathbb{R}$ using an exponential activation function. Given a set of data points with labels $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset \mathbb{R}^d \times \mathbb{R}$ where $n$ denotes the number of the data. Here $F(W(t),x)$ can be expressed as $F(W(t),x) := \sum_{r=1}^m a_r \exp(\langle w_r, x \rangle)$, where $m$ represents the number of neurons, and $w_r(t)$ are weights at time $t$. It's standard in literature that $a_r$ are the fixed weights and it's never changed during the training. We initialize the weights $W(0) \in \mathbb{R}^{d \times m}$ with random Gaussian distributions, such that $w_r(0) \sim \mathcal{N}(0, I_d)$ and initialize $a_r$ from random sign distribution for each $r \in [m]$. Using the gradient descent algorithm, we can find a weight $W(T)$ such that $\| F(W(T), X) - y \|_2 \leq \epsilon$ holds with probability $1-\delta$, where $\epsilon \in (0,0.1)$ and $m = \Omega(n^{2+o(1)}\log(n/\delta))$. To optimize the over-parameterization bound $m$, we employ several tight analysis techniques from previous studies [Song and Yang arXiv 2019, Munteanu, Omlor, Song and Woodruff ICML 2022].

Stereoscopic, head-tracked display systems can show users realistic, world-locked virtual objects and environments. However, discrepancies between the rendering pipeline and physical viewing conditions can lead to perceived instability in the rendered content resulting in reduced realism, immersion, and, potentially, visually-induced motion sickness. The requirements to achieve perceptually stable world-locked rendering are unknown due to the challenge of constructing a wide field of view, distortion-free display with highly accurate head- and eye-tracking. In this work we introduce new hardware and software built upon recently introduced hardware and present a system capable of rendering virtual objects over real-world references without perceivable drift under such constraints. The platform is used to study acceptable errors in render camera position for world-locked rendering in augmented and virtual reality scenarios, where we find an order of magnitude difference in perceptual sensitivity between them. We conclude by comparing study results with an analytic model which examines changes to apparent depth and visual heading in response to camera displacement errors. We identify visual heading as an important consideration for world-locked rendering alongside depth errors from incorrect disparity.

Convergence is a crucial issue in iterative algorithms. Damping is commonly employed to ensure the convergence of iterative algorithms. The conventional ways of damping are scalar-wise, and either heuristic or empirical. Recently, an analytically optimized vector damping was proposed for memory message-passing (iterative) algorithms. As a result, it yields a special class of covariance matrices called L-banded matrices. In this paper, we show these matrices have broad algebraic properties arising from their L-banded structure. In particular, compact analytic expressions for the LDL decomposition, the Cholesky decomposition, the determinant after a column substitution, minors, and cofactors are derived. Furthermore, necessary and sufficient conditions for an L-banded matrix to be definite, a recurrence to obtain the characteristic polynomial, and some other properties are given. In addition, we give new derivations of the determinant and the inverse.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司