亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Open-source cyber threat intelligence (OSCTI) has become essential for keeping up with the rapidly changing threat landscape. However, current OSCTI gathering and management solutions mainly focus on structured Indicators of Compromise (IOC) feeds, which are low-level and isolated, providing only a narrow view of potential threats. Meanwhile, the extensive and interconnected knowledge found in the unstructured text of numerous OSCTI reports (e.g., security articles, threat reports) available publicly is still largely underexplored. To bridge the gap, we propose ThreatKG, an automated system for OSCTI gathering and management. ThreatKG efficiently collects a large number of OSCTI reports from multiple sources, leverages specialized AI-based techniques to extract high-quality knowledge about various threat entities and their relationships, and constructs and continuously updates a threat knowledge graph by integrating new OSCTI data. ThreatKG features a modular and extensible design, allowing for the addition of components to accommodate diverse OSCTI report structures and knowledge types. Our extensive evaluations demonstrate ThreatKG's practical effectiveness in enhancing threat knowledge gathering and management.

相關內容

通(tong)過學習、實踐或(huo)探索所獲得的(de)認識、判斷或(huo)技能。

The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.

Image forgery localization (IFL) is a crucial technique for preventing tampered image misuse and protecting social safety. However, due to the rapid development of image tampering technologies, extracting more comprehensive and accurate forgery clues remains an urgent challenge. To address these challenges, we introduce a novel information-theoretic IFL framework named SUMI-IFL that imposes sufficiency-view and minimality-view constraints on forgery feature representation. First, grounded in the theoretical analysis of mutual information, the sufficiency-view constraint is enforced on the feature extraction network to ensure that the latent forgery feature contains comprehensive forgery clues. Considering that forgery clues obtained from a single aspect alone may be incomplete, we construct the latent forgery feature by integrating several individual forgery features from multiple perspectives. Second, based on the information bottleneck, the minimality-view constraint is imposed on the feature reasoning network to achieve an accurate and concise forgery feature representation that counters the interference of task-unrelated features. Extensive experiments show the superior performance of SUMI-IFL to existing state-of-the-art methods, not only on in-dataset comparisons but also on cross-dataset comparisons.

Large Vision-Language Models (VLMs) have been extended to understand both images and videos. Visual token compression is leveraged to reduce the considerable token length of visual inputs. To meet the needs of different tasks, existing high-performance models usually process images and videos separately with different token compression strategies, limiting the capabilities of combining images and videos. To this end, we extend each image into a "static" video and introduce a unified token compression strategy called Progressive Visual Token Compression (PVC), where the tokens of each frame are progressively encoded and adaptively compressed to supplement the information not extracted from previous frames. Video tokens are efficiently compressed with exploiting the inherent temporal redundancy. Images are repeated as static videos, and the spatial details can be gradually supplemented in multiple frames. PVC unifies the token compressing of images and videos. With a limited number of tokens per frame (64 tokens by default), spatial details and temporal changes can still be preserved. Experiments show that our model achieves state-of-the-art performance across various video understanding benchmarks, including long video tasks and fine-grained short video tasks. Meanwhile, our unified token compression strategy incurs no performance loss on image benchmarks, particularly in detail-sensitive tasks.

Accurate camera motion estimation is essential for recovering global human motion in world coordinates from RGB video inputs. SLAM is widely used for estimating camera trajectory and point cloud, but monocular SLAM does so only up to an unknown scale factor. Previous works estimate the scale factor through optimization, but this is unreliable and time-consuming. This paper presents an optimization-free scale calibration framework, Human as Checkerboard (HAC). HAC innovatively leverages the human body predicted by human mesh recovery model as a calibration reference. Specifically, it uses the absolute depth of human-scene contact joints as references to calibrate the corresponding relative scene depth from SLAM. HAC benefits from geometric priors encoded in human mesh recovery models to estimate the SLAM scale and achieves precise global human motion estimation. Simple yet powerful, our method sets a new state-of-the-art performance for global human mesh estimation tasks, reducing motion errors by 50% over prior local-to-global methods while using 100$\times$ less inference time than optimization-based methods. Project page: //martayang.github.io/HAC.

Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{//github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.

We propose a fully Bayesian approach to wideband, or broadband, direction-of-arrival (DoA) estimation and signal detection. Unlike previous works in wideband DoA estimation and detection, where the signals were modeled in the time-frequency domain, we directly model the time-domain representation and treat the non-causal part of the source signal as latent variables. Furthermore, our Bayesian model allows for closed-form marginalization of the latent source signals by leveraging conjugacy. To further speed up computation, we exploit the sparse ``stripe matrix structure'' of the considered system, which stems from the circulant matrix representation of linear time-invariant (LTI) systems. This drastically reduces the time complexity of computing the likelihood from $\mathcal{O}(N^3 k^3)$ to $\mathcal{O}(N k^3)$, where $N$ is the number of samples received by the array and $k$ is the number of sources. These computational improvements allow for efficient posterior inference through reversible jump Markov chain Monte Carlo (RJMCMC). We use the non-reversible extension of RJMCMC (NRJMCMC), which often achieves lower autocorrelation and faster convergence than the conventional reversible variant. Detection, estimation, and reconstruction of the latent source signals can then all be performed in a fully Bayesian manner through the samples drawn using NRJMCMC. We evaluate the detection performance of the procedure by comparing against generalized likelihood ratio testing (GLRT) and information criteria.

Multi-robot collaborative transportation is a critical capability that has attracted significant attention over recent years. To reliably transport a kinematically constrained payload, a team of robots must closely collaborate and coordinate their individual velocities to achieve the desired payload motion. For quadruped robots, a key challenge is caused by their anisotropic velocity limits, where forward and backward movement is faster and more stable than lateral motion. In order to enable dual-quadruped collaborative transportation and address the above challenges, we propose a novel Bilevel Learning for Collaborative Transportation (BLCT) approach. In the upper-level, BLCT learns a team collaboration policy for the two quadruped robots to move the payload to the goal position, while accounting for the kinematic constraints imposed by their connection to the payload. In the lower-level, BLCT optimizes velocity controls of each individual robot to closely follow the collaboration policy while satisfying the anisotropic velocity constraints and avoiding obstacles. Experiments demonstrate that our BLCT approach well enables collaborative transportation in challenging scenarios and outperforms baseline approaches.

Recent advances in text-to-image (T2I) generation have shown remarkable success in producing high-quality images from text. However, existing T2I models show decayed performance in compositional image generation involving multiple objects and intricate relationships. We attribute this problem to limitations in existing datasets of image-text pairs, which lack precise inter-object relationship annotations with prompts only. To address this problem, we construct LAION-SG, a large-scale dataset with high-quality structural annotations of scene graphs (SG), which precisely describe attributes and relationships of multiple objects, effectively representing the semantic structure in complex scenes. Based on LAION-SG, we train a new foundation model SDXL-SG to incorporate structural annotation information into the generation process. Extensive experiments show advanced models trained on our LAION-SG boast significant performance improvements in complex scene generation over models on existing datasets. We also introduce CompSG-Bench, a benchmark that evaluates models on compositional image generation, establishing a new standard for this domain.

Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the \textbf{ServeForEmo} dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present \textbf{SweetieChat}, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.

The collaborative visual perception of multiple Unmanned Aerial Vehicles (UAVs) has increasingly become a research hotspot. Compared to a single UAV equipped with a short-baseline stereo camera, multi-UAV collaborative vision offers a wide and variable baseline, providing potential benefits in flexible and large-scale depth perception. In this paper, we propose the concept of a collaborative stereo camera, where the left and right cameras are mounted on two UAVs that share an overlapping FOV. Considering the dynamic flight of two UAVs in the real world, the FOV and relative pose of the left and right cameras are continuously changing. Compared to fixed-baseline stereo cameras, this aerial collaborative stereo system introduces two challenges, which are highly real-time requirements for dynamic cross-camera stereo feature association and relative pose estimation of left and right cameras. To address these challenges, we first propose a real-time dual-channel feature association algorithm with a guidance-prediction structure. Then, we propose a Relative Multi-State Constrained Kalman Filter (Rel-MSCKF) algorithm to estimate the relative pose by fusing co-visual features and UAVs' visual-inertial odometry (VIO). Extensive experiments are performed on the popular onboard computer NVIDIA NX. Results on the resource-constrained platform show that the real-time performance of the dual-channel feature association is significantly superior to traditional methods. The convergence of Rel-MSCKF is assessed under different initial baseline errors. In the end, we present a potential application of aerial collaborative stereo for remote mapping obstacles in urban scenarios. We hope this work can serve as a foundational study for more multi-UAV collaborative vision research. Online video: //youtu.be/avxMuOf5Qcw

北京阿比特科技有限公司