亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article introduces a novel, low-cost technique for hiding data in commercially available resistive-RAM (ReRAM) chips. The data is kept hidden in ReRAM cells by manipulating its analog physical properties through switching ($\textit{set/reset}$) operations. This hidden data, later, is retrieved by sensing the changes in cells' physical properties (i.e., $\textit{set/reset}$ time of the memory cells). The proposed system-level hiding technique does not affect the normal memory operations and does not require any hardware modifications. Furthermore, the proposed hiding approach is robust against temperature variations and the aging of the devices through normal read/write operation. The silicon results show that our proposed data hiding technique is acceptably fast with ${\sim}0.4bit/min$ of encoding and ${\sim}15.625bits/s$ of retrieval rates, and the hidden message is unrecoverable without the knowledge of the secret key, which is used to enhance the security of hidden information.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 詞向量表示 · Performer · state-of-the-art · 均值 ·
2024 年 2 月 22 日

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

Temporal Knowledge Graph (TKG) forecasting aims to predict future facts based on given histories. Most recent graph-based models excel at capturing structural information within TKGs but lack semantic comprehension abilities. Nowadays, with the surge of LLMs, the LLM-based TKG prediction model has emerged. However, the existing LLM-based model exhibits three shortcomings: (1) It only focuses on the first-order history for prediction while ignoring high-order historical information, resulting in the provided information for LLMs being extremely limited. (2) LLMs struggle with optimal reasoning performance under heavy historical information loads. (3) For TKG prediction, the temporal reasoning capability of LLM alone is limited. To address the first two challenges, we propose Chain-of-History (CoH) reasoning which explores high-order histories step-by-step, achieving effective utilization of high-order historical information for LLMs on TKG prediction. To address the third issue, we design CoH as a paly-and-plug module to enhance the performance of graph-based models for TKG prediction. Extensive experiments on three datasets and backbones demonstrate the effectiveness of CoH.

Graph Neural Networks (GNNs) have emerged as the dominant approach for machine learning on graph-structured data. However, concerns have arisen regarding the vulnerability of GNNs to small adversarial perturbations. Existing defense methods against such perturbations suffer from high time complexity and can negatively impact the model's performance on clean graphs. To address these challenges, this paper introduces NoisyGNNs, a novel defense method that incorporates noise into the underlying model's architecture. We establish a theoretical connection between noise injection and the enhancement of GNN robustness, highlighting the effectiveness of our approach. We further conduct extensive empirical evaluations on the node classification task to validate our theoretical findings, focusing on two popular GNNs: the GCN and GIN. The results demonstrate that NoisyGNN achieves superior or comparable defense performance to existing methods while minimizing added time complexity. The NoisyGNN approach is model-agnostic, allowing it to be integrated with different GNN architectures. Successful combinations of our NoisyGNN approach with existing defense techniques demonstrate even further improved adversarial defense results. Our code is publicly available at: //github.com/Sennadir/NoisyGNN.

We propose a novel approach to the problem of controller design for environments modeled as Markov decision processes (MDPs). Specifically, we consider a hierarchical MDP a graph with each vertex populated by an MDP called a "room". We first apply deep reinforcement learning (DRL) to obtain low-level policies for each room, scaling to large rooms of unknown structure. We then apply reactive synthesis to obtain a high-level planner that chooses which low-level policy to execute in each room. The central challenge in synthesizing the planner is the need for modeling rooms. We address this challenge by developing a DRL procedure to train concise "latent" policies together with PAC guarantees on their performance. Unlike previous approaches, ours circumvents a model distillation step. Our approach combats sparse rewards in DRL and enables reusability of low-level policies. We demonstrate feasibility in a case study involving agent navigation amid moving obstacles.

This paper investigates the ultra reliable and low latency communication (URLLC) performance of the IRS-aided MIMO system. The upper and lower bounds of the optimal average error probability (OAEP) for the coding rate 1/sqrt(Mn) of the capacity are derived, where n and M represent the blocklength and the number of transmit antennas, respectively. To achieve this goal, a new central limit theorem (CLT) for the mutual information density over the IRS-aided MIMO system is derived in the asymptotic regime where the block-length, the IRS size, and number of the antennas go to infinity with the same pace. The CLT is then utilized to derive the closed form upper and lower bounds for the OAEP. Based on the analysis result, a gradient-based algorithm is proposed to minimize the lower bound of the OAEP by optimizing the phase shift of the IRS. Simulation results validate the fitness of the CLT and the effectiveness of the proposed algorithm in optimizing the theoretical bound, as well as the performance of practical LDPC code.

Risk mitigation techniques are critical to avoiding accidents associated with driving behaviour. We provide a novel Multi-Class Driver Distraction Risk Assessment (MDDRA) model that considers the vehicle, driver, and environmental data during a journey. MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous. It offers flexibility in adjusting the parameters and weights to consider each event on a specific severity level. We collect real-world data using the Field Operation Test (TeleFOT), covering drivers using the same routes in the East Midlands, United Kingdom (UK). The results show that reducing road accidents caused by driver distraction is possible. We also study the correlation between distraction (driver, vehicle, and environment) and the classification severity based on a continuous distraction severity score. Furthermore, we apply machine learning techniques to classify and predict driver distraction according to severity levels to aid the transition of control from the driver to the vehicle (vehicle takeover) when a situation is deemed risky. The Ensemble Bagged Trees algorithm performed best, with an accuracy of 96.2%.

This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

Factual inconsistency poses a significant hurdle for the commercial deployment of abstractive summarizers. Under this Large Language Model (LLM) era, this work focuses around two important questions: what is the best way to leverage LLM for factual inconsistency detection, and how could we distill a smaller LLM with both high efficiency and efficacy? Three zero-shot paradigms are firstly proposed and evaluated across five diverse datasets: direct inference on the entire summary or each summary window; entity verification through question generation and answering. Experiments suggest that LLM itself is capable to resolve this task train-free under the proper paradigm design, surpassing strong trained baselines by 2.8% on average. To further promote practical utility, we then propose training strategies aimed at distilling smaller open-source LLM that learns to score the entire summary at once with high accuracy, which outperforms the zero-shot approaches by much larger LLM, serving as an effective and efficient ready-to-use scorer.

In Optical Coherence Tomography (OCT), speckle noise significantly hampers image quality, affecting diagnostic accuracy. Current methods, including traditional filtering and deep learning techniques, have limitations in noise reduction and detail preservation. Addressing these challenges, this study introduces a novel denoising algorithm, Block-Matching Steered-Mixture of Experts with Multi-Model Inference and Autoencoder (BM-SMoE-AE). This method combines block-matched implementation of the SMoE algorithm with an enhanced autoencoder architecture, offering efficient speckle noise reduction while retaining critical image details. Our method stands out by providing improved edge definition and reduced processing time. Comparative analysis with existing denoising techniques demonstrates the superior performance of BM-SMoE-AE in maintaining image integrity and enhancing OCT image usability for medical diagnostics.

This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with $\ell_{1}$-penalization to handle high-dimensional covariates. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Under certain special case, the proposed estimator becomes more efficient than the conventional covariate adjusted estimator at the cost of an additional sparsity condition. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.

北京阿比特科技有限公司