亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose an novel methodology aimed at simulating the learning phenomenon of nystagmus through the application of differential blurring on datasets. Nystagmus is a biological phenomenon that influences human vision throughout life, notably by diminishing head shake from infancy to adulthood. Leveraging this concept, we address the issue of waste classification, a pressing global concern. The proposed framework comprises two modules, with the second module closely resembling the original Vision Transformer, a state-of-the-art model model in classification tasks. The primary motivation behind our approach is to enhance the model's precision and adaptability, mirroring the real-world conditions that the human visual system undergoes. This novel methodology surpasses the standard Vision Transformer model in waste classification tasks, exhibiting an improvement with a margin of 2%. This improvement underscores the potential of our methodology in improving model precision by drawing inspiration from human vision perception. Further research in the proposed methodology could yield greater performance results, and can be extrapolated to other global issues.

相關內容

In this paper, we explore the idea of analysing the historical bias of contextual language models based on BERT by measuring their adequacy with respect to Early Modern (EME) and Modern (ME) English. In our preliminary experiments, we perform fill-in-the-blank tests with 60 masked sentences (20 EME-specific, 20 ME-specific and 20 generic) and three different models (i.e., BERT Base, MacBERTh, English HLM). We then rate the model predictions according to a 5-point bipolar scale between the two language varieties and derive a weighted score to measure the adequacy of each model to EME and ME varieties of English.

In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.

In this paper, we consider a decentralized learning problem in the presence of stragglers. Although gradient coding techniques have been developed for distributed learning to evade stragglers, where the devices send encoded gradients with redundant training data, it is difficult to apply those techniques directly to decentralized learning scenarios. To deal with this problem, we propose a new gossip-based decentralized learning method with gradient coding (GOCO). In the proposed method, to avoid the negative impact of stragglers, the parameter vectors are updated locally using encoded gradients based on the framework of stochastic gradient coding and then averaged in a gossip-based manner. We analyze the convergence performance of GOCO for strongly convex loss functions. And we also provide simulation results to demonstrate the superiority of the proposed method in terms of learning performance compared with the baseline methods.

In this paper, we introduce two novel methods to design outer polar codes for two previously proposed concatenated polar code architectures: augmented polar codes and local-global polar codes. These methods include a stopping set (SS) construction and a nonstationary density evolution (NDE) construction. Simulation results demonstrate the advantage of these methods over previously proposed constructions based on density evolution (DE) and LLR evolution.

In this paper, we prove the first Bayesian regret bounds for Thompson Sampling in reinforcement learning in a multitude of settings. We simplify the learning problem using a discrete set of surrogate environments, and present a refined analysis of the information ratio using posterior consistency. This leads to an upper bound of order $\widetilde{O}(H\sqrt{d_{l_1}T})$ in the time inhomogeneous reinforcement learning problem where $H$ is the episode length and $d_{l_1}$ is the Kolmogorov $l_1-$dimension of the space of environments. We then find concrete bounds of $d_{l_1}$ in a variety of settings, such as tabular, linear and finite mixtures, and discuss how how our results are either the first of their kind or improve the state-of-the-art.

In this study, we focus on two main tasks, the first for detecting legal violations within unstructured textual data, and the second for associating these violations with potentially affected individuals. We constructed two datasets using Large Language Models (LLMs) which were subsequently validated by domain expert annotators. Both tasks were designed specifically for the context of class-action cases. The experimental design incorporated fine-tuning models from the BERT family and open-source LLMs, and conducting few-shot experiments using closed-source LLMs. Our results, with an F1-score of 62.69\% (violation identification) and 81.02\% (associating victims), show that our datasets and setups can be used for both tasks. Finally, we publicly release the datasets and the code used for the experiments in order to advance further research in the area of legal natural language processing (NLP).

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司