亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Several methods of triclustering of three dimensional data require the specification of the cluster size in each dimension. This introduces a certain degree of arbitrariness. To address this issue, we propose a new method, namely the multi-slice clustering (MSC) for a 3-order tensor data set. We analyse, in each dimension or tensor mode, the spectral decomposition of each tensor slice, i.e. a matrix. Thus, we define a similarity measure between matrix slices up to a threshold (precision) parameter, and from that, identify a cluster. The intersection of all partial clusters provides the desired triclustering. The effectiveness of our algorithm is shown on both synthetic and real-world data sets.

相關內容

Many physical processes such as weather phenomena or fluid mechanics are governed by partial differential equations (PDEs). Modelling such dynamical systems using Neural Networks is an emerging research field. However, current methods are restricted in various ways: they require prior knowledge about the governing equations, and are limited to linear or first-order equations. In this work we propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems. We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics. Our model can be applied to any data without requiring any prior knowledge about the governing PDE. We evaluate NeuralPDE on datasets generated by solving a wide variety of PDEs, covering higher orders, non-linear equations and multiple spatial dimensions.

Dynamic replication is a wide-spread multi-copy routing approach for efficiently coping with the intermittent connectivity in mobile opportunistic networks. According to it, a node forwards a message replica to an encountered node based on a utility value that captures the latter's fitness for delivering the message to the destination. The popularity of the approach stems from its flexibility to effectively operate in networks with diverse characteristics without requiring special customization. Nonetheless, its drawback is the tendency to produce a high number of replicas that consume limited resources such as energy and storage. To tackle the problem we make the observation that network nodes can be grouped, based on their utility values, into clusters that portray different delivery capabilities. We exploit this finding to transform the basic forwarding strategy, which is to move a packet using nodes of increasing utility, and actually forward it through clusters of increasing delivery capability. The new strategy works in synergy with the basic dynamic replication algorithms and is fully configurable, in the sense that it can be used with virtually any utility function. We also extend our approach to work with two utility functions at the same time, a feature that is especially efficient in mobile networks that exhibit social characteristics. By conducting experiments in a wide set of real-life networks, we empirically show that our method is robust in reducing the overall number of replicas in networks with diverse connectivity characteristics without at the same time hindering delivery efficiency.

The CP decomposition for high dimensional non-orthogonal spiked tensors is an important problem with broad applications across many disciplines. However, previous works with theoretical guarantee typically assume restrictive incoherence conditions on the basis vectors for the CP components. In this paper, we propose new computationally efficient composite PCA and concurrent orthogonalization algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions. The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step. It can be used as an initialization for any iterative optimization schemes for the tensor CP decomposition. The concurrent orthogonalization algorithm iteratively estimates the basis vector in each mode of the tensor by simultaneously applying projections to the orthogonal complements of the spaces generated by others CP components in other modes. It is designed to improve the alternating least squares estimator and other forms of the high order orthogonal iteration for tensors with low or moderately high CP ranks, and it is guaranteed to converge rapidly when the error of any given initial estimator is bounded by a small constant. Our theoretical investigation provides estimation accuracy and convergence rates for the two proposed algorithms. Our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.

Graph-based clustering plays an important role in clustering tasks. As graph convolution network (GCN), a variant of neural networks on graph-type data, has achieved impressive performance, it is attractive to find whether GCNs can be used to augment the graph-based clustering methods on non-graph data, i.e., general data. However, given $n$ samples, the graph-based clustering methods usually need at least $O(n^2)$ time to build graphs and the graph convolution requires nearly $O(n^2)$ for a dense graph and $O(|\mathcal{E}|)$ for a sparse one with $|\mathcal{E}|$ edges. In other words, both graph-based clustering and GCNs suffer from severe inefficiency problems. To tackle this problem and further employ GCN to promote the capacity of graph-based clustering, we propose a novel clustering method, AnchorGAE. As the graph structure is not provided in general clustering scenarios, we first show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build GCNs. Anchors are generated from the original data to construct a bipartite graph such that the computational complexity of graph convolution is reduced from $O(n^2)$ and $O(|\mathcal{E}|)$ to $O(n)$. The succeeding steps for clustering can be easily designed as $O(n)$ operations. Interestingly, the anchors naturally lead to a siamese GCN architecture. The bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data. Eventually, we theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.

We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset. Specifically, we are given a set $T$ of $n$ points in $\mathbb{R}^d$ and a parameter $0< \alpha <\frac 1 2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a well-behaved distribution $\mathcal{D}$ and the remaining $(1-\alpha)$-fraction are arbitrary. The goal is to output a small list of vectors, at least one of which is close to the mean of $\mathcal{D}$. We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees, with running time $O(n^{1 + \epsilon_0} d)$, for any fixed $\epsilon_0 > 0$. All prior algorithms for this problem had additional polynomial factors in $\frac 1 \alpha$. We leverage this result, together with additional techniques, to obtain the first almost-linear time algorithms for clustering mixtures of $k$ separated well-behaved distributions, nearly-matching the statistical guarantees of spectral methods. Prior clustering algorithms inherently relied on an application of $k$-PCA, thereby incurring runtimes of $\Omega(n d k)$. This marks the first runtime improvement for this basic statistical problem in nearly two decades. The starting point of our approach is a novel and simpler near-linear time robust mean estimation algorithm in the $\alpha \to 1$ regime, based on a one-shot matrix multiplicative weights-inspired potential decrease. We crucially leverage this new algorithmic framework in the context of the iterative multi-filtering technique of Diakonikolas et al. '18, '20, providing a method to simultaneously cluster and downsample points using one-dimensional projections -- thus, bypassing the $k$-PCA subroutines required by prior algorithms.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

The availability of large microarray data has led to a growing interest in biclustering methods in the past decade. Several algorithms have been proposed to identify subsets of genes and conditions according to different similarity measures and under varying constraints. In this paper we focus on the exclusive row biclustering problem for gene expression data sets, in which each row can only be a member of a single bicluster while columns can participate in multiple ones. This type of biclustering may be adequate, for example, for clustering groups of cancer patients where each patient (row) is expected to be carrying only a single type of cancer, while each cancer type is associated with multiple (and possibly overlapping) genes (columns). We present a novel method to identify these exclusive row biclusters through a combination of existing biclustering algorithms and combinatorial auction techniques. We devise an approach for tuning the threshold for our algorithm based on comparison to a null model in the spirit of the Gap statistic approach. We demonstrate our approach on both synthetic and real-world gene expression data and show its power in identifying large span non-overlapping rows sub matrices, while considering their unique nature. The Gap statistic approach succeeds in identifying appropriate thresholds in all our examples.

Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司