Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
Large language models (LLMs) have showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal reasoning tasks involving complex temporal logic. Existing research has explored LLM performance on temporal reasoning using diverse datasets and benchmarks. However, these studies often rely on real-world data that LLMs may have encountered during pre-training or employ anonymization techniques that can inadvertently introduce factual inconsistencies. In this work, we address these limitations by introducing novel synthetic datasets specifically designed to assess LLM temporal reasoning abilities in various scenarios. The diversity of question types across these datasets enables systematic investigation into the impact of the problem structure, size, question type, fact order, and other factors on LLM performance. Our findings provide valuable insights into the strengths and weaknesses of current LLMs in temporal reasoning tasks. To foster further research in this area, we are open-sourcing the datasets and evaluation framework used in our experiments: //huggingface.co/datasets/baharef/ToT.
Relational reasoning refers to the ability to infer and understand the relations between multiple entities. In humans, this ability underpins many higher cognitive functions, such as problem solving and decision-making, and has been reliably linked to fluid intelligence. Despite machine learning models making impressive advances across various domains, such as natural language processing and vision, the extent to which such models can perform relational reasoning tasks remains unclear. Here we study the importance of positional encoding (PE) for relational reasoning in the Transformer, and find that a learnable PE outperforms all other commonly-used PEs (e.g., absolute, relative, rotary, etc.). Moreover, we find that when using a PE with a learnable parameter, the choice of initialization greatly influences the learned representations and its downstream generalization performance. Specifically, we find that a learned PE initialized from a small-norm distribution can 1) uncover ground-truth position information, 2) generalize in the presence of noisy inputs, and 3) produce behavioral patterns that are consistent with human performance. Our results shed light on the importance of learning high-performing and robust PEs during relational reasoning tasks, which will prove useful for tasks in which ground truth positions are not provided or not known.
The quality of output from large language models (LLMs), particularly in machine translation (MT), is closely tied to the quality of in-context examples (ICEs) provided along with the query, i.e., the text to translate. The effectiveness of these ICEs is influenced by various factors, such as the domain of the source text, the order in which the ICEs are presented, the number of these examples, and the prompt templates used. Naturally, selecting the most impactful ICEs depends on understanding how these affect the resulting translation quality, which ultimately relies on translation references or human judgment. This paper presents a novel methodology for in-context learning (ICL) that relies on a search algorithm guided by domain-specific quality estimation (QE). Leveraging the XGLM model, our methodology estimates the resulting translation quality without the need for translation references, selecting effective ICEs for MT to maximize translation quality. Our results demonstrate significant improvements over existing ICL methods and higher translation performance compared to fine-tuning a pre-trained language model (PLM), specifically mBART-50.
A diverse array of reasoning strategies has been proposed to elicit the capabilities of large language models. However, in this paper, we point out that traditional evaluations which focus solely on performance metrics miss a key factor: the increased effectiveness due to additional compute. By overlooking this aspect, a skewed view of strategy efficiency is often presented. This paper introduces a framework that incorporates the compute budget into the evaluation, providing a more informative comparison that takes into account both performance metrics and computational cost. In this budget-aware perspective, we find that complex reasoning strategies often don't surpass simpler baselines purely due to algorithmic ingenuity, but rather due to the larger computational resources allocated. When we provide a simple baseline like chain-of-thought self-consistency with comparable compute resources, it frequently outperforms reasoning strategies proposed in the literature. In this scale-aware perspective, we find that unlike self-consistency, certain strategies such as multi-agent debate or Reflexion can become worse if more compute budget is utilized.
Large language models (LLMs) have demonstrated potential in the innovation of many disciplines. However, how they can best be developed for oncology remains underdeveloped. State-of-the-art OpenAI models were fine-tuned on a clinical dataset and clinical guidelines text corpus for two important cancer treatment factors, adjuvant radiation therapy and chemotherapy, using a novel Langchain prompt engineering pipeline. A high accuracy (0.85+) was achieved in the classification of adjuvant radiation therapy and chemotherapy for breast cancer patients. Furthermore, a confidence interval was formed from observational data on the quality of treatment from human oncologists to estimate the proportion of scenarios in which the model must outperform the original oncologist in its treatment prediction to be a better solution overall as 8.2% to 13.3%. Due to indeterminacy in the outcomes of cancer treatment decisions, future investigation, potentially a clinical trial, would be required to determine if this threshold was met by the models. Nevertheless, with 85% of U.S. cancer patients receiving treatment at local community facilities, these kinds of models could play an important part in expanding access to quality care with outcomes that lie, at minimum, close to a human oncologist.
Large language models (LLMs) are recognized as systems that closely mimic aspects of human intelligence. This capability has attracted attention from the social science community, who see the potential in leveraging LLMs to replace human participants in experiments, thereby reducing research costs and complexity. In this paper, we introduce a framework for large language models personification, including a strategy for constructing virtual characters' life stories from the ground up, a Multi-Agent Cognitive Mechanism capable of simulating human cognitive processes, and a psychology-guided evaluation method to assess human simulations from both self and observational perspectives. Experimental results demonstrate that our constructed simulacra can produce personified responses that align with their target characters. Our work is a preliminary exploration which offers great potential in practical applications. All the code and datasets will be released, with the hope of inspiring further investigations.
Large language models (LLMs) have achieved impressive performance across various natural language benchmarks, prompting a continual need to curate more difficult datasets for larger LLMs, which is costly and time-consuming. In this paper, we propose to automate dataset updating and provide systematic analysis regarding its effectiveness in dealing with benchmark leakage issue, difficulty control, and stability. Thus, once the current benchmark has been mastered or leaked, we can update it for timely and reliable evaluation. There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, preserving stylistic and contextual essence, and 2) extending strategy that further expands existing samples at varying cognitive levels by adapting Bloom's taxonomy of educational objectives. Extensive experiments on updated MMLU and BIG-Bench demonstrate the stability of the proposed strategies and find that the mimicking strategy can effectively alleviate issues of overestimation from benchmark leakage. In cases where the efficient mimicking strategy fails, our extending strategy still shows promising results. Additionally, by controlling the difficulty, we can better discern the models' performance and enable fine-grained analysis neither too difficult nor too easy an exam can fairly judge students' learning status. To the best of our knowledge, we are the first to automate updating benchmarks for reliable and timely evaluation. Our demo leaderboard can be found at //yingjiahao14.github.io/Automating-DatasetUpdates/.
In-context learning has become a popular paradigm in natural language processing. However, its performance can be significantly influenced by the order of in-context demonstration examples. In this paper, we found that causal language models (CausalLMs) are more sensitive to this order compared to prefix language models (PrefixLMs). We attribute this phenomenon to the auto-regressive attention masks within CausalLMs, which restrict each token from accessing information from subsequent tokens. This results in different receptive fields for samples at different positions, thereby leading to representation disparities across positions. To tackle this challenge, we introduce an unsupervised fine-tuning method, termed the Information-Augmented and Consistency-Enhanced approach. This approach utilizes contrastive learning to align representations of in-context examples across different positions and introduces a consistency loss to ensure similar representations for inputs with different permutations. This enhances the model's predictive consistency across permutations. Experimental results on five benchmarks suggest that our proposed method can reduce the sensitivity of CausalLMs to the order of in-context examples and exhibit robust generalizability, particularly when demonstrations are sourced from a candidate pool different from that used in the training phase, or when the number of in-context examples differs from what is used during training.
As large language models (LLMs) see greater use in academic and commercial settings, there is increasing interest in methods that allow language models to generate texts aligned with human preferences. In this paper, we present an initial exploration of language model optimization for human preferences from direct outcome datasets, where each sample consists of a text and an associated numerical outcome measuring the reader's response. We first propose that language model optimization should be viewed as a causal problem to ensure that the model correctly learns the relationship between the text and the outcome. We formalize this causal language optimization problem, and we develop a method--causal preference optimization (CPO)--that solves an unbiased surrogate objective for the problem. We further extend CPO with doubly robust CPO (DR-CPO), which reduces the variance of the surrogate objective while retaining provably strong guarantees on bias. Finally, we empirically demonstrate the effectiveness of (DR-)CPO in optimizing state-of-the-art LLMs for human preferences on direct outcome data, and we validate the robustness of DR-CPO under difficult confounding conditions.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.