亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we investigate the causal effect of financial literacy education on a composite financial health score constructed from 17 self-reported financial health and distress metrics ranging from spending habits to confidence in ability to repay debt to day-to-day financial skill. Leveraging data from the 2021 National Financial Capability Study, we find a significant and positive average treatment effect of financial literacy education on financial health. To test the robustness of this effect, we utilize a variety of causal estimators (Generalized Lin's estimator, 1:1 propensity matching, IPW, and AIPW) and conduct sensitivity analysis using alternate health outcome scoring and varying caliper strengths. Our results are robust to these changes. The robust positive effect of financial literacy education on financial health found here motivates financial education for all individuals and holds implications for policymakers seeking to address the worsening debt problem in the U.S, though the relatively small magnitude of effect demands further research by experts in the domain of financial health.

相關內容

Motivated by multiple applications in social networks, nervous systems, and financial risk analysis, we consider the problem of learning the underlying (directed) influence graph or causal graph of a high-dimensional multivariate discrete-time Markov process with memory. At any discrete time instant, each observed variable of the multivariate process is a binary string of random length, which is parameterized by an unobservable or hidden [0,1]-valued scalar. The hidden scalars corresponding to the variables evolve according to discrete-time linear stochastic dynamics dictated by the underlying influence graph whose nodes are the variables. We extend an existing algorithm for learning i.i.d. graphical models to this Markovian setting with memory and prove that it can learn the influence graph based on the binary observations using logarithmic (in number of variables or nodes) samples when the degree of the influence graph is bounded. The crucial analytical contribution of this work is the derivation of the sample complexity result by upper and lower bounding the rate of convergence of the observed Markov process with memory to its stationary distribution in terms of the parameters of the influence graph.

The growing number of cases that require digital forensic analysis raises concerns about the ability of law enforcement to conduct investigations promptly. Consequently, this paper delves into the potential and effectiveness of integrating Large Language Models (LLMs) into digital forensic investigation to address these challenges. A comprehensive literature review is carried out, encompassing existing digital forensic models, tools, LLMs, deep learning techniques, and the use of LLMs in investigations. The review identifies current challenges within existing digital forensic processes and explores both the obstacles and possibilities of incorporating LLMs. In conclusion, the study asserts that the adoption of LLMs in digital forensics, with appropriate constraints, has the potential to improve investigation efficiency, improve traceability, and alleviate technical and judicial barriers faced by law enforcement entities.

We study the question of how best to assign an encouragement in a randomized encouragement study. In our setting, units arrive with covariates, receive a nudge toward treatment or control, acquire one of those statuses in a way that need not align with the nudge, and finally have a response observed. The nudge can be seen as a binary instrument that affects the response only via the treatment status. Our goal is to assign the nudge as a function of covariates in a way that best estimates the local average treatment effect (LATE). We assume a partially linear model, wherein the baseline model is non-parametric and the treatment term is linear in the covariates. Under this model, we outline a two-stage procedure to consistently estimate the LATE. Though the variance of the LATE is intractable, we derive a finite sample approximation and thus a design criterion to minimize. This criterion is convex, allowing for constraints that might arise for budgetary or ethical reasons. We prove conditions under which our solution asymptotically recovers the lowest true variance among all possible nudge propensities. We apply our method to a semi-synthetic example involving triage in an emergency department and find significant gains relative to a regression discontinuity design.

In this study, we explore the impact of relaxing data consistency in parallel machine learning training during a failure using various parameter server configurations. Our failure recovery strategies include traditional checkpointing, chain replication (which ensures a backup server takes over in case of failure), and a novel stateless parameter server approach. In the stateless approach, workers continue generating gradient updates even if the parameter server is down, applying these updates once the server is back online. We compare these techniques to a standard checkpointing approach, where the training job is resumed from the latest checkpoint. To assess the resilience and performance of each configuration, we intentionally killed the parameter server during training for each experiment. Our experiment results indicate that the stateless parameter server approach continues to train towards convergence and improves accuracy as much as 10\% in the face of a failure despite using stale weights and gradients. The chain replication and checkpointing techniques demonstrate convergence but suffer from setbacks in accuracy due to restarting from old checkpoints. These results suggest that allowing workers to continue generating updates during server downtime and applying these updates later can effectively improve hardware utilization. Furthermore, despite higher resource usage, the stateless parameter server method incurs similar monetary costs in terms of hardware usage compared to standard checkpointing methods due to the pricing structure of common cloud providers.

In this paper, we present a very first study to investigate trust and ethical implications of on-device artificial intelligence (AI), focusing on ''small'' language models (SLMs) amenable for personal devices like smartphones. While on-device SLMs promise enhanced privacy, reduced latency, and improved user experience compared to cloud-based services, we posit that they might also introduce significant challenges and vulnerabilities compared to on-server counterparts. As part of our trust assessment study, we conduct a systematic evaluation of the state-of-the-art on-devices SLMs, contrasted to their on-server counterparts, based on a well-established trustworthiness measurement framework. Our results show on-device SLMs to be (statistically) significantly less trustworthy, specifically demonstrating more stereotypical, unfair and privacy-breaching behavior. Informed by these findings, we then perform our ethics assessment study by inferring whether SLMs would provide responses to potentially unethical vanilla prompts, collated from prior jailbreaking and prompt engineering studies and other sources. Strikingly, the on-device SLMs did answer valid responses to these prompts, which ideally should be rejected. Even more seriously, the on-device SLMs responded with valid answers without any filters and without the need for any jailbreaking or prompt engineering. These responses can be abused for various harmful and unethical scenarios including: societal harm, illegal activities, hate, self-harm, exploitable phishing content and exploitable code, all of which indicates the high vulnerability and exploitability of these on-device SLMs. Overall, our findings highlight gaping vulnerabilities in state-of-the-art on-device AI which seem to stem from resource constraints faced by these models and which may make typical defenses fundamentally challenging to be deployed in these environments.

This study investigates pedestrian crash severity through Automated Machine Learning (AutoML), offering a streamlined and accessible method for analyzing critical factors. Utilizing a detailed dataset from Utah spanning 2010-2021, the research employs AutoML to assess the effects of various explanatory variables on crash outcomes. The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model, enhancing the understanding of influential factors such as lighting conditions, road type, and weather on pedestrian crash severity. Emphasizing the efficiency and democratization of data-driven methodologies, the paper discusses the benefits of using AutoML in traffic safety analysis. This integration of AutoML with SHAP analysis not only bolsters predictive accuracy but also improves interpretability, offering critical insights into effective pedestrian safety measures. The findings highlight the potential of this approach in advancing the analysis of pedestrian crash severity.

How are the merits of innovative ideas communicated in science? Here we conduct semantic analyses of grant application success with a focus on scientific promotional language, which has been growing in frequency in many contexts and purportedly may convey an innovative idea's originality and significance. Our analysis attempts to surmount limitations of prior studies by examining the full text of tens of thousands of both funded and unfunded grants from three leading public and private funding agencies: the NIH, the NSF, and the Novo Nordisk Foundation, one of the world's largest private science foundations. We find a robust association between promotional language and the support and adoption of innovative ideas by funders and other scientists. First, the percentage of promotional language in a grant proposal is associated with up to a doubling of the grant's probability of being funded. Second, a grant's promotional language reflects its intrinsic level of innovativeness. Third, the percentage of promotional language predicts the expected citation and productivity impact of publications that are supported by funded grants. Lastly, a computer-assisted experiment that manipulates the promotional language in our data demonstrates how promotional language can communicate the merit of ideas through cognitive activation. With the incidence of promotional language in science steeply rising, and the pivotal role of grants in converting promising and aspirational ideas into solutions, our analysis provides empirical evidence that promotional language is associated with effectively communicating the merits of innovative scientific ideas.

In this paper, we use matrix information theory as an analytical tool to analyze the dynamics of the information interplay between data representations and classification head vectors in the supervised learning process. Specifically, inspired by the theory of Neural Collapse, we introduce matrix mutual information ratio (MIR) and matrix entropy difference ratio (HDR) to assess the interactions of data representation and class classification heads in supervised learning, and we determine the theoretical optimal values for MIR and HDR when Neural Collapse happens. Our experiments show that MIR and HDR can effectively explain many phenomena occurring in neural networks, for example, the standard supervised training dynamics, linear mode connectivity, and the performance of label smoothing and pruning. Additionally, we use MIR and HDR to gain insights into the dynamics of grokking, which is an intriguing phenomenon observed in supervised training, where the model demonstrates generalization capabilities long after it has learned to fit the training data. Furthermore, we introduce MIR and HDR as loss terms in supervised and semi-supervised learning to optimize the information interactions among samples and classification heads. The empirical results provide evidence of the method's effectiveness, demonstrating that the utilization of MIR and HDR not only aids in comprehending the dynamics throughout the training process but can also enhances the training procedure itself.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司