Current spectral compressed sensing methods via Hankel matrix completion employ symmetric factorization to demonstrate the low-rank property of the Hankel matrix. However, previous non-convex gradient methods only utilize asymmetric factorization to achieve spectral compressed sensing. In this paper, we propose a novel nonconvex projected gradient descent method for spectral compressed sensing via symmetric factorization named Symmetric Hankel Projected Gradient Descent (SHGD), which updates only one matrix and avoids a balancing regularization term. SHGD reduces about half of the computation and storage costs compared to the prior gradient method based on asymmetric factorization. {Besides, the symmetric factorization employed in our work is completely novel to the prior low-rank factorization model, introducing a new factorization ambiguity under complex orthogonal transformation}. Novel distance metrics are designed for our factorization method and a linear convergence guarantee to the desired signal is established with $O(r^2\log(n))$ observations. Numerical simulations demonstrate the superior performance of the proposed SHGD method in phase transitions and computation efficiency compared to state-of-the-art methods.
To optimize efficiently over discrete data and with only few available target observations is a challenge in Bayesian optimization. We propose a continuous relaxation of the objective function and show that inference and optimization can be computationally tractable. We consider in particular the optimization domain where very few observations and strict budgets exist; motivated by optimizing protein sequences for expensive to evaluate bio-chemical properties. The advantages of our approach are two-fold: the problem is treated in the continuous setting, and available prior knowledge over sequences can be incorporated directly. More specifically, we utilize available and learned distributions over the problem domain for a weighting of the Hellinger distance which yields a covariance function. We show that the resulting acquisition function can be optimized with both continuous or discrete optimization algorithms and empirically assess our method on two bio-chemical sequence optimization tasks.
Low-rank matrix approximation play a ubiquitous role in various applications such as image processing, signal processing, and data analysis. Recently, random algorithms of low-rank matrix approximation have gained widespread adoption due to their speed, accuracy, and robustness, particularly in their improved implementation on modern computer architectures. Existing low-rank approximation algorithms often require prior knowledge of the rank of the matrix, which is typically unknown. To address this bottleneck, we propose a low-rank approximation algorithm termed efficient orthogonal decomposition with automatic basis extraction (EOD-ABE) tailored for the scenario where the rank of the matrix is unknown. Notably, we introduce a randomized algorithm to automatically extract the basis that reveals the rank. The efficacy of the proposed algorithms is theoretically and numerically validated, demonstrating superior speed, accuracy, and robustness compared to existing methods. Furthermore, we apply the algorithms to image reconstruction, achieving remarkable results.
Several cryptographic systems depend upon the computational difficulty of reversing cryptographic hash functions. Robust hash functions transform inputs to outputs in such a way that the inputs cannot be later retrieved in a reasonable amount of time even if the outputs and the function that created them are known. Consequently, hash functions can be cryptographically secure, and they are employed in encryption, authentication, and other security methods. It has been suggested that such cryptographically-secure hash functions will play a critical role in the era of post-quantum cryptography (PQC), as they do in conventional systems. In this work, we introduce a procedure that leverages the principle of reversibility to generate circuits that invert hash functions. We provide a proof-of-concept implementation and describe methods that allow for scaling the hash function inversion approach. Specifically, we implement one manifestation of the algorithm as part of a more general automated quantum circuit synthesis, compilation, and optimization toolkit. We illustrate production of reversible circuits for crypto-hash functions that inherently provide the inverse of the function, and we describe data structures that increase the scalability of the hash function inversion approach.
We develop a novel approach for efficiently applying variational quantum linear solver (VQLS) in context of structured sparse matrices. Such matrices frequently arise during numerical solution of partial differential equations which are ubiquitous in science and engineering. Conventionally, Pauli basis is used for linear combination of unitary (LCU) decomposition of the underlying matrix to facilitate the evaluation the global/local VQLS cost functions. However, Pauli basis in worst case can result in number of LCU terms that scale quadratically with respect to the matrix size. We show that by using an alternate basis one can better exploit the sparsity and underlying structure of matrix leading to number of tensor product terms which scale only logarithmically with respect to the matrix size. Given this new basis is comprised of non-unitary operators, we employ the concept of unitary completion to design efficient quantum circuits for computing the global/local VQLS cost functions. We compare our approach with other related concepts in the literature including unitary dilation and measurement in Bell basis, and discuss its pros/cons while using VQLS applied to Heat equation as an example.
Unsupervised semantic segmentation aims to automatically partition images into semantically meaningful regions by identifying global categories within an image corpus without any form of annotation. Building upon recent advances in self-supervised representation learning, we focus on how to leverage these large pre-trained models for the downstream task of unsupervised segmentation. We present PriMaPs - Principal Mask Proposals - decomposing images into semantically meaningful masks based on their feature representation. This allows us to realize unsupervised semantic segmentation by fitting class prototypes to PriMaPs with a stochastic expectation-maximization algorithm, PriMaPs-EM. Despite its conceptual simplicity, PriMaPs-EM leads to competitive results across various pre-trained backbone models, including DINO and DINOv2, and across datasets, such as Cityscapes, COCO-Stuff, and Potsdam-3. Importantly, PriMaPs-EM is able to boost results when applied orthogonally to current state-of-the-art unsupervised semantic segmentation pipelines.
We provide in this work an algorithm for approximating a very broad class of symmetric Toeplitz matrices to machine precision in $\mathcal{O}(n \log n)$ time. In particular, for a Toeplitz matrix $\mathbf{\Sigma}$ with values $\mathbf{\Sigma}_{j,k} = h_{|j-k|} = \int_{-1/2}^{1/2} e^{2 \pi i |j-k| \omega} S(\omega) \mathrm{d} \omega$ where $S(\omega)$ is piecewise smooth, we give an approximation $\mathbf{\mathcal{F}} \mathbf{\Sigma} \mathbf{\mathcal{F}}^H \approx \mathbf{D} + \mathbf{U} \mathbf{V}^H$, where $\mathbf{\mathcal{F}}$ is the DFT matrix, $\mathbf{D}$ is diagonal, and the matrices $\mathbf{U}$ and $\mathbf{V}$ are in $\mathbb{C}^{n \times r}$ with $r \ll n$. Studying these matrices in the context of time series, we offer a theoretical explanation of this structure and connect it to existing spectral-domain approximation frameworks. We then give a complete discussion of the numerical method for assembling the approximation and demonstrate its efficiency for improving Whittle-type likelihood approximations, including dramatic examples where a correction of rank $r = 2$ to the standard Whittle approximation increases the accuracy from $3$ to $14$ digits for a matrix $\mathbf{\Sigma} \in \mathbb{R}^{10^5 \times 10^5}$. The method and analysis of this work applies well beyond time series analysis, providing an algorithm for extremely accurate direct solves with a wide variety of symmetric Toeplitz matrices. The analysis employed here largely depends on asymptotic expansions of oscillatory integrals, and also provides a new perspective on when existing spectral-domain approximation methods for Gaussian log-likelihoods can be particularly problematic.
Unsupervised clustering of wafer map defect patterns is challenging because the appearance of certain defect patterns varies significantly. This includes changing shape, location, density, and rotation of the defect area on the wafer. We present a harvesting approach, which can cluster even challenging defect patterns of wafer maps well. Our approach makes use of a well-known, three-step procedure: feature extraction, dimension reduction, and clustering. The novelty in our approach lies in repeating dimensionality reduction and clustering iteratively while filtering out one cluster per iteration according to its silhouette score. This method leads to an improvement of clustering performance in general and is especially useful for difficult defect patterns. The low computational effort allows for a quick assessment of large datasets and can be used to support manual labeling efforts. We benchmark against related approaches from the literature and show improved results on a real-world industrial dataset.
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.