We consider the following network model motivated, in particular, by blockchains and peer-to-peer live streaming. Data packet flows arrive at the network nodes and need to be disseminated to all other nodes. Packets are relayed through the network via links of finite capacity. A packet leaves the network when it is disseminated to all nodes. Our focus is on two communication disciplines, which determine the order in which packets are transmitted over each link, namely {\em Random-Useful} (RU) and {\em Oldest-Useful} (OU). We show that RU has the maximum stability region in a general network. For the OU we demonstrate that, somewhat surprisingly, it does {\em not} in general have the maximum stability region. We prove that OU does achieve maximum stability in the important special case of a symmetric network, given by the full graph with equal capacities on all links and equal arrival rates at all nodes. We also give other stability results, and compare different disciplines' performances in a symmetric system via simulation. Finally, we study the cumulative delays experienced by a packet as it propagates through the symmetric system, specifically the delay asymptotic behavior as $N \to \infty$. We put forward some conjectures about this behavior, supported by heuristic arguments and simulation experiments.
Traffic prediction represents one of the crucial tasks for smartly optimizing the mobile network. The research in this topic concentrated in making predictions in a centralized fashion, i.e., by collecting data from the different network elements. This translates to a considerable amount of energy for data transmission and processing. In this work, we propose a novel prediction framework based on edge computing which uses datasets obtained on the edge through a large measurement campaign. Two main Deep Learning architectures are designed, based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), and tested under different training conditions. In addition, Knowledge Transfer Learning (KTL) techniques are employed to improve the performance of the models while reducing the required computational resources. Simulation results show that the CNN architectures outperform the RNNs. An estimation for the needed training energy is provided, highlighting KTL ability to reduce the energy footprint of the models of 60% and 90% for CNNs and RNNs, respectively. Finally, two cutting-edge explainable Artificial Intelligence techniques are employed to interpret the derived learning models.
Permutation symmetries of deep networks make simple operations like model averaging and similarity estimation challenging. In many cases, aligning the weights of the networks, i.e., finding optimal permutations between their weights, is necessary. More generally, weight alignment is essential for a wide range of applications, from model merging, through exploring the optimization landscape of deep neural networks, to defining meaningful distance functions between neural networks. Unfortunately, weight alignment is an NP-hard problem. Prior research has mainly focused on solving relaxed versions of the alignment problem, leading to either time-consuming methods or sub-optimal solutions. To accelerate the alignment process and improve its quality, we propose a novel framework aimed at learning to solve the weight alignment problem, which we name Deep-Align. To that end, we first demonstrate that weight alignment adheres to two fundamental symmetries and then, propose a deep architecture that respects these symmetries. Notably, our framework does not require any labeled data. We provide a theoretical analysis of our approach and evaluate Deep-Align on several types of network architectures and learning setups. Our experimental results indicate that a feed-forward pass with Deep-Align produces better or equivalent alignments compared to those produced by current optimization algorithms. Additionally, our alignments can be used as an initialization for other methods to gain even better solutions with a significant speedup in convergence.
Fitting generative models to sequential data typically involves two recursive computations through time, one forward and one backward. The latter could be a computation of the loss gradient (as in backpropagation through time), or an inference algorithm (as in the RTS/Kalman smoother). The backward pass in particular is computationally expensive (since it is inherently serial and cannot exploit GPUs), and difficult to map onto biological processes. Work-arounds have been proposed; here we explore a very different one: requiring the generative model to learn the joint distribution over current and previous states, rather than merely the transition probabilities. We show on toy datasets that different architectures employing this principle can learn aspects of the data typically requiring the backward pass.
Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian-Wolf coding, Wyner-Ziv coding, Berger-Tung coding, multiple description coding, asymmetric channel coding, Gelfand-Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.
We devise a version of Linear Temporal Logic (LTL) on a denotational domain of streams. We investigate this logic in terms of domain theory, (point-free) topology and geometric logic. This yields the first steps toward an extension of the "Domain Theory in Logical Form" paradigm to temporal liveness properties. We show that the negation-free formulae of LTL induce sober subspaces of streams, but that this is in general not the case in presence of negation. We propose a direct, inductive, translation of negation-free LTL to geometric logic. This translation reflects the approximations used to compute the usual fixpoint representations of LTL modalities. As a motivating example, we handle a natural input-output specification for the usual filter function on streams.
Functional bootstrapping is a core technique in Fully Homomorphic Encryption (FHE). For large plaintext, to evaluate a general function homomorphically over a ciphertext, in the FHEW/TFHE approach, since the function in look-up table form is encoded in the coefficients of a test polynomial, the degree of the polynomial must be high enough to hold the entire table. This increases the bootstrapping time complexity and memory cost, as the size of bootstrapping keys and keyswitching keys need to be large accordingly. In this paper, we propose to encode the look-up table of any function in a polynomial vector, whose coefficients can hold more data. The corresponding representation of the additive group Zq used in the RGSW-based bootstrapping is the group of monic monomial permutation matrices, which integrates the permutation matrix representation used by Alperin-Sheriff and Peikert in 2014, and the monic monomial representation used in the FHEW/TFHE scheme. We make comprehensive investigation of the new representation, and propose a new bootstrapping algorithm based on it. The new algorithm has the prominent benefit of small bootstrapping key size and small key-switching key size, which leads to polynomial factor improvement in key size, in addition to constant factor improvement in run-time cost.
The Internet of Things (IoT) consistently generates vast amounts of data, sparking increasing concern over the protection of data privacy and the limitation of data misuse. Federated learning (FL) facilitates collaborative capabilities among multiple parties by sharing machine learning (ML) model parameters instead of raw user data, and it has recently gained significant attention for its potential in privacy preservation and learning efficiency enhancement. In this paper, we highlight the digital ethics concerns that arise when human-centric devices serve as clients in FL. More specifically, challenges of game dynamics, fairness, incentive, and continuity arise in FL due to differences in perspectives and objectives between clients and the server. We analyze these challenges and their solutions from the perspectives of both the client and the server, and through the viewpoints of centralized and decentralized FL. Finally, we explore the opportunities in FL for human-centric IoT as directions for future development.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.