亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The solution set of a system of polynomial equations typically contains ill-behaved, singular points. Resolution is a fundamental process in geometry in which we replace singular points with smooth points, while keeping the rest of the solution set unchanged. Resolutions are not unique: the usual way to describe them involves repeatedly performing a fundamental operation known as "blowing-up", and the complexity of the resolution highly depends on certain choices. The process can be translated into various versions of a 2-player game, the so-called Hironaka game, and a winning strategy for the first player provides a solution to the resolution problem. In this paper we introduce a new approach to the Hironaka game that uses reinforcement learning agents to find optimal resolutions of singularities. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation.

相關內容

We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter H>1/2, which arise e. g., from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on [2], we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

This paper aims to reconstruct the initial condition of a hyperbolic equation with an unknown damping coefficient. Our approach involves approximating the hyperbolic equation's solution by its truncated Fourier expansion in the time domain and using a polynomial-exponential basis. This truncation process facilitates the elimination of the time variable, consequently, yielding a system of quasi-linear elliptic equations. To globally solve the system without needing an accurate initial guess, we employ the Carleman contraction principle. We provide several numerical examples to illustrate the efficacy of our method. The method not only delivers precise solutions but also showcases remarkable computational efficiency.

The dynamical equation of the boundary vorticity has been obtained, which shows that the viscosity at a solid wall is doubled as if the fluid became more viscous at the boundary. For certain viscous flows the boundary vorticity can be determined via the dynamical equation up to bounded errors for all time, without the need of knowing the details of the main stream flows. We then validate the dynamical equation by carrying out stochastic direct numerical simulations (i.e. the random vortex method for wall-bounded incompressible viscous flows) by two different means of updating the boundary vorticity, one using mollifiers of the Biot-Savart singular integral kernel, another using the dynamical equations.

This article investigates the weak approximation towards the invariant measure of semi-linear stochastic differential equations (SDEs) under non-globally Lipschitz coefficients. For this purpose, we propose a linear-theta-projected Euler (LTPE) scheme, which also admits an invariant measure, to handle the potential influence of the linear stiffness. Under certain assumptions, both the SDE and the corresponding LTPE method are shown to converge exponentially to the underlying invariant measures, respectively. Moreover, with time-independent regularity estimates for the corresponding Kolmogorov equation, the weak error between the numerical invariant measure and the original one can be guaranteed with an order one. Numerical experiments are provided to verify our theoretical findings.

We introduce a new class of absorbing boundary conditions (ABCs) for the Helmholtz equation. The proposed ABCs can be derived from a certain simple class of perfectly matched layers using $L$ discrete layers and using the $Q_N$ Lagrange finite element in conjunction with the $N$-point Gauss-Legendre quadrature reduced integration rule. The proposed ABCs are classified by a tuple $(L,N)$, and achieve reflection error of order $O(R^{2LN})$ for some $R<1$. The new ABCs generalise the perfectly matched discrete layers proposed by Guddati and Lim [Int. J. Numer. Meth. Engng 66 (6) (2006) 949-977], including them as type $(L,1)$. An analysis of the proposed ABCs is performed motivated by the work of Ainsworth [J. Comput. Phys. 198 (1) (2004) 106-130]. The new ABCs facilitate numerical implementations of the Helmholtz problem with ABCs if $Q_N$ finite elements are used in the physical domain. Moreover, giving more insight, the analysis presented in this work potentially aids with developing ABCs in related areas.

We consider the solution of large stiff systems of ordinary differential equations with explicit exponential Runge--Kutta integrators. These problems arise from semi-discretized semi-linear parabolic partial differential equations on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of $\varphi$-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required number of Krylov subspace iterations to obtain a desired tolerance increase drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a-posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant numbers of rational Krylov iterations, which enable a near-linear scaling of the runtime with respect to the problem size.

Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions with high dimensional conditioning instruments. We develop a novel inference method for the parameters identified by conditional moment restrictions, where the dimension of the conditioning instruments is high and there is no prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes the asymptotic power against a set of $n^{-1/2}$-local alternatives of interest by solving a data-dependent max-min problem for tuning parameter selection. We demonstrate the efficacy of our method by two empirical examples: the elasticity of intertemporal substitution and rational unbiased reporting of ability status. Extensive Monte Carlo experiments based on the first empirical example show that our inference procedure is superior to those available in the literature in realistic settings.

A superdirective antenna array has the potential to achieve an array gain proportional to the square of the number of antennas, making it of great value for future wireless communications. However, designing the superdirective beamformer while considering the complicated mutual-coupling effect is a practical challenge. Moreover, the superdirective antenna array is highly sensitive to excitation errors, especially when the number of antennas is large or the antenna spacing is very small, necessitating demanding and precise control over excitations. To address these problems, we first propose a novel superdirective beamforming approach based on the embedded element pattern (EEP), which contains the coupling information. The closed-form solution to the beamforming vector and the corresponding directivity factor are derived. This method relies on the beam coupling factors (BCFs) between the antennas, which are provided in closed form. To address the high sensitivity problem, we formulate a constrained optimization problem and propose an EEP-aided orthogonal complement-based robust beamforming (EEP-OCRB) algorithm. Full-wave simulation results validate our proposed methods. Finally, we build a prototype of a 5-dipole superdirective antenna array and conduct real-world experiments. The measurement results demonstrate the realization of the superdirectivity with our EEP-based method, as well as the robustness of the proposed EEP-OCRB algorithm to excitation errors.

In sampling-based Bayesian models of brain function, neural activities are assumed to be samples from probability distributions that the brain uses for probabilistic computation. However, a comprehensive understanding of how mechanistic models of neural dynamics can sample from arbitrary distributions is still lacking. We use tools from functional analysis and stochastic differential equations to explore the minimum architectural requirements for $\textit{recurrent}$ neural circuits to sample from complex distributions. We first consider the traditional sampling model consisting of a network of neurons whose outputs directly represent the samples (sampler-only network). We argue that synaptic current and firing-rate dynamics in the traditional model have limited capacity to sample from a complex probability distribution. We show that the firing rate dynamics of a recurrent neural circuit with a separate set of output units can sample from an arbitrary probability distribution. We call such circuits reservoir-sampler networks (RSNs). We propose an efficient training procedure based on denoising score matching that finds recurrent and output weights such that the RSN implements Langevin sampling. We empirically demonstrate our model's ability to sample from several complex data distributions using the proposed neural dynamics and discuss its applicability to developing the next generation of sampling-based brain models.

北京阿比特科技有限公司