The replication crisis is real, and awareness of its existence is growing across disciplines. We argue that research in human-computer interaction (HCI), and especially virtual reality (VR), is vulnerable to similar challenges due to many shared methodologies, theories, and incentive structures. For this reason, in this work, we transfer established solutions from other fields to address the lack of replicability and reproducibility in HCI and VR. We focus on reducing errors resulting from the so-called human factor and adapt established solutions to the specific needs of VR research. In addition, we present a toolkit to support the setup, execution, and evaluation of VR research. Some of the features aim to reduce human errors and thus improve replicability and reproducibility. Finally, the identified chances are applied to a typical scientific process in VR.
Nowadays, sharding is deemed as a promising way to save traditional blockchain protocols from their low scalability. However, such technique also brings several potential risks and huge communication overheads. An improper design may give rise to the inconsistent state among different committees. Further, the communication overheads arising from cross-shard transactions unfortunately reduce the system's performance. In this paper, we first summarize five essential issues that all sharding blockchain designers face. For each issue, we discuss its key challenge and propose our suggested solutions. In order to break the performance bottlenecks, we propose a reputation mechanism for selecting leaders. The term of reputation in our design reflects each node's honest computation resources. In addition, we introduce a referee committee and partial sets in each committee, and design a recovery procedure in case the leader is malicious. Under the design, we prove that malicious leaders will not hurt the system and will be evicted. Furthermore, we conduct a series of simulations to evaluate our design. The results show that selecting leaders by the reputation can dramatically improve the system performance.
Satellite network is the first step of interstellar voyages. It can provide global Internet connectivity everywhere on earth, where most areas cannot access the Internet by the terrestrial infrastructure due to the geographic accessibility and high cost. The space industry experiences a rise in large low-earth-orbit satellite constellations to achieve universal connectivity. The research community is also urgent to do some leading research to bridge the connectivity divide. Researchers now conduct their work by simulation, which is far from enough. However, experiments on real satellites are blocked by the high threshold of space technology, such as deployment cost and unknown risks. To solve the above dilemma, we are eager to contribute to the universal connectivity and build an open research platform, Tiansuan constellation to support experiments on real satellite networks. We discuss the potential research topics that would benefit from Tiansuan constellation. We provide two case studies that have already deployed in two experimental satellites of Tiansuan constellation.
Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.
AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D$^3$M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D$^3$M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D$^3$M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
Current person re-identification (re-id) methods assume that (1) pre-labelled training data are available for every camera pair, (2) the gallery size for re-identification is moderate. Both assumptions scale poorly to real-world applications when camera network size increases and gallery size becomes large. Human verification of automatic model ranked re-id results becomes inevitable. In this work, a novel human-in-the-loop re-id model based on Human Verification Incremental Learning (HVIL) is formulated which does not require any pre-labelled training data to learn a model, therefore readily scalable to new camera pairs. This HVIL model learns cumulatively from human feedback to provide instant improvement to re-id ranking of each probe on-the-fly enabling the model scalable to large gallery sizes. We further formulate a Regularised Metric Ensemble Learning (RMEL) model to combine a series of incrementally learned HVIL models into a single ensemble model to be used when human feedback becomes unavailable.