亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets. Recent studies have demonstrated that LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions. However, interactions with LLMs can be time-consuming. In many practical scenarios, they require a significant amount of storage space that can only be deployed on remote cloud server nodes. Additionally, using commercial LLMs can be costly since they may charge based on usage frequency. In this paper, we explore how to enable intelligent cost-effective interactions between the agent and an LLM. We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions to accomplish a target task. Experiments on MiniGrid and Habitat environments that entail planning sub-goals demonstrate that When2Ask learns to solve target tasks with only a few necessary interactions with an LLM, and significantly reduces interaction costs in testing environments compared with baseline methods. Experiment results also suggest that by learning a mediator model to interact with the LLM, the agent's performance becomes more robust against partial observability of the environment. Our code is available at //github.com/ZJLAB-AMMI/LLM4RL.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · MoDELS · 隱狀態 · CASE · 解碼 ·
2023 年 10 月 18 日

Large language models (LLMs) have been shown to possess impressive capabilities, while also raising crucial concerns about the faithfulness of their responses. A primary issue arising in this context is the management of unanswerable queries by LLMs, which often results in hallucinatory behavior, due to overconfidence. In this paper, we explore the behavior of LLMs when presented with unanswerable queries. We ask: do models \textbf{represent} the fact that the question is unanswerable when generating a hallucinatory answer? Our results show strong indications that such models encode the answerability of an input query, with the representation of the first decoded token often being a strong indicator. These findings shed new light on the spatial organization within the latent representations of LLMs, unveiling previously unexplored facets of these models. Moreover, they pave the way for the development of improved decoding techniques with better adherence to factual generation, particularly in scenarios where query unanswerability is a concern.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning. However, existing literature has highlighted the sensitivity of this capability to the selection of few-shot demonstrations. Current understandings of the underlying mechanisms by which this capability arises from regular language model pretraining objectives remain disconnected from the real-world LLMs. This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models. On this premise, we propose an algorithm to select optimal demonstrations from a set of annotated data with a small LM, and then directly generalize the selected demonstrations to larger LMs. We demonstrate significant improvement over baselines, averaged over eight GPT models on eight real-world text classification datasets. We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math word problem dataset. Our empirical findings support our hypothesis that LLMs implicitly infer a latent variable containing task information.

Recently, researchers have made considerable improvements in dialogue systems with the progress of large language models (LLMs) such as ChatGPT and GPT-4. These LLM-based chatbots encode the potential biases while retaining disparities that can harm humans during interactions. The traditional biases investigation methods often rely on human-written test cases. However, these test cases are usually expensive and limited. In this work, we propose a first-of-its-kind method that automatically generates test cases to detect LLMs' potential gender bias. We apply our method to three well-known LLMs and find that the generated test cases effectively identify the presence of biases. To address the biases identified, we propose a mitigation strategy that uses the generated test cases as demonstrations for in-context learning to circumvent the need for parameter fine-tuning. The experimental results show that LLMs generate fairer responses with the proposed approach.

Recently, Large language models (LLMs) with powerful general capabilities have been increasingly integrated into various Web applications, while undergoing alignment training to ensure that the generated content aligns with user intent and ethics. Unfortunately, they remain the risk of generating harmful content like hate speech and criminal activities in practical applications. Current approaches primarily rely on detecting, collecting, and training against harmful prompts to prevent such risks. However, they typically focused on the "superficial" harmful prompts with a solitary intent, ignoring composite attack instructions with multiple intentions that can easily elicit harmful content in real-world scenarios. In this paper, we introduce an innovative technique for obfuscating harmful instructions: Compositional Instruction Attacks (CIA), which refers to attacking by combination and encapsulation of multiple instructions. CIA hides harmful prompts within instructions of harmless intentions, making it impossible for the model to identify underlying malicious intentions. Furthermore, we implement two transformation methods, known as T-CIA and W-CIA, to automatically disguise harmful instructions as talking or writing tasks, making them appear harmless to LLMs. We evaluated CIA on GPT-4, ChatGPT, and ChatGLM2 with two safety assessment datasets and two harmful prompt datasets. It achieves an attack success rate of 95%+ on safety assessment datasets, and 83%+ for GPT-4, 91%+ for ChatGPT (gpt-3.5-turbo backed) and ChatGLM2-6B on harmful prompt datasets. Our approach reveals the vulnerability of LLMs to such compositional instruction attacks that harbor underlying harmful intentions, contributing significantly to LLM security development. Warning: this paper may contain offensive or upsetting content!

A Retrieval-Augmented Language Model (RALM) augments a generative language model by retrieving context-specific knowledge from an external database. This strategy facilitates impressive text generation quality even with smaller models, thus reducing orders of magnitude of computational demands. However, RALMs introduce unique system design challenges due to (a) the diverse workload characteristics between LM inference and retrieval and (b) the various system requirements and bottlenecks for different RALM configurations such as model sizes, database sizes, and retrieval frequencies. We propose Chameleon, a heterogeneous accelerator system that integrates both LM and retrieval accelerators in a disaggregated architecture. The heterogeneity ensures efficient acceleration of both LM inference and retrieval, while the accelerator disaggregation enables the system to independently scale both types of accelerators to fulfill diverse RALM requirements. Our Chameleon prototype implements retrieval accelerators on FPGAs and assigns LM inference to GPUs, with a CPU server orchestrating these accelerators over the network. Compared to CPU-based and CPU-GPU vector search systems, Chameleon achieves up to 23.72x speedup and 26.2x energy efficiency. Evaluated on various RALMs, Chameleon exhibits up to 2.16x reduction in latency and 3.18x speedup in throughput compared to the hybrid CPU-GPU architecture. These promising results pave the way for bringing accelerator heterogeneity and disaggregation into future RALM systems.

Large language models (LLMs) have been used for diverse tasks in natural language processing (NLP), yet remain under-explored for task-oriented dialogue systems (TODS), especially for end-to-end TODS. We present InstructTODS, a novel off-the-shelf framework for zero-shot end-to-end task-oriented dialogue systems that can adapt to diverse domains without fine-tuning. By leveraging LLMs, InstructTODS generates a proxy belief state that seamlessly translates user intentions into dynamic queries for efficient interaction with any KB. Our extensive experiments demonstrate that InstructTODS achieves comparable performance to fully fine-tuned TODS in guiding dialogues to successful completion without prior knowledge or task-specific data. Furthermore, a rigorous human evaluation of end-to-end TODS shows that InstructTODS produces dialogue responses that notably outperform both the gold responses and the state-of-the-art TODS in terms of helpfulness, informativeness, and humanness. Moreover, the effectiveness of LLMs in TODS is further supported by our comprehensive evaluations on TODS subtasks: dialogue state tracking, intent classification, and response generation. Code and implementations could be found here //github.com/WillyHC22/InstructTODS/

Large language models (LLMs) have garnered significant attention for their remarkable performance in a continuously expanding set of natural language processing tasks. However, these models have been shown to harbor inherent societal biases, or stereotypes, which can adversely affect their performance in their many downstream applications. In this paper, we introduce a novel, purely prompt-based approach to uncover hidden stereotypes within any arbitrary LLM. Our approach dynamically generates a knowledge representation of internal stereotypes, enabling the identification of biases encoded within the LLM's internal knowledge. By illuminating the biases present in LLMs and offering a systematic methodology for their analysis, our work contributes to advancing transparency and promoting fairness in natural language processing systems.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

北京阿比特科技有限公司