亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Performance estimation under covariate shift is a crucial component of safe AI model deployment, especially for sensitive use-cases. Recently, several solutions were proposed to tackle this problem, most leveraging model predictions or softmax confidence to derive accuracy estimates. However, under dataset shifts, confidence scores may become ill-calibrated if samples are too far from the training distribution. In this work, we show that taking into account distances of test samples to their expected training distribution can significantly improve performance estimation under covariate shift. Precisely, we introduce a "distance-check" to flag samples that lie too far from the expected distribution, to avoid relying on their untrustworthy model outputs in the accuracy estimation step. We demonstrate the effectiveness of this method on 13 image classification tasks, across a wide-range of natural and synthetic distribution shifts and hundreds of models, with a median relative MAE improvement of 27% over the best baseline across all tasks, and SOTA performance on 10 out of 13 tasks. Our code is publicly available at //github.com/melanibe/distance_matters_performance_estimation.

相關內容

To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.

Large language models (LLMs) are demonstrating significant promise as an alternate strategy to facilitate analyses and optimizations of high-performance computing programs, circumventing the need for resource-intensive manual tool creation. In this paper, we explore a novel LLM-based data race detection approach combining prompting engineering and fine-tuning techniques. We create a dedicated dataset named DRB-ML, which is derived from DataRaceBench, with fine-grain labels showing the presence of data race pairs and their associated variables, line numbers, and read/write information. DRB-ML is then used to evaluate representative LLMs and fine-tune open-source ones. Our experiment shows that LLMs can be a viable approach to data race detection. However, they still cannot compete with traditional data race detection tools when we need detailed information about variable pairs causing data races.

This paper presents a nonlinear control design for highly underactuated balance robots, which possess more numbers of unactuated degree-of-freedom (DOF) than actuated ones. To address the challenge of simultaneously trajectory tracking of actuated coordinates and balancing of unactuated coordinates, the proposed control converts a robot dynamics into a series of cascaded subsystems and each of them is considered virtually actuated. To achieve the control goal, we sequentially design and update the virtual and actual control inputs to incorporate the balance task such that the unactuated coordinates are balanced to their instantaneous equilibrium. The closed-loop dynamics are shown to be stable and the tracking errors exponentially converge towards a neighborhood near the origin. The simulation results demonstrate the effectiveness of the proposed control design by using a triple-inverted pendulum cart system.

Multivariate spatial modeling is key to understanding the behavior of materials downstream in a mining operation. The ore recovery depends on the mineralogical composition, which needs to be properly captured by the model to allow for good predictions. Multivariate modeling must also capture the behavior of tailings and waste materials to understand the environmental risks involved in their disposal. However, multivariate spatial modeling is challenging when the variables show complex relationships, such as non-linear correlation, heteroscedastic behavior, or spatial trends. This contribution proposes a novel methodology for general multivariate contexts, with the idea of disaggregating the global non-linear behavior among variables into the spatial domain in a piece-wise linear fashion. We demonstrate that the complex multivariate behavior can be reproduced by looking at local correlations between variables at sample locations, inferred from a local neighborhood, and interpolating these local linear dependencies by using a non-stationary version of the Linear Model of Coregionalization. This mixture of locally varying linear correlations is combined to reproduce the global complex behavior seen in the multivariate distribution. The main challenge is to solve appropriately the interpolation of the known correlation matrices over the domain, as these local correlations defined at sample locations can be endowed with a manifold structure, on which the Euclidean distance is not a suitable metric for interpolation of such correlations. This is addressed by using tools from Riemannian geometry: correlation matrices are interpolated using a weighted Fr\'echet mean of the correlations inferred at sample locations. An application of the procedure is shown in a real case study with good results in terms of accuracy and reproduction of the reference multivariate distributions and semi-variograms.

Joint multimodal functional data acquisition, where functional data from multiple modes are measured simultaneously from the same subject, has emerged as an exciting modern approach enabled by recent engineering breakthroughs in the neurological and biological sciences. One prominent motivation to acquire such data is to enable new discoveries of the underlying connectivity by combining multimodal signals. Despite the scientific interest, there remains a gap in principled statistical methods for estimating the graph underlying multimodal functional data. To this end, we propose a new integrative framework that models the data generation process and identifies operators mapping from the observation space to the latent space. We then develop an estimator that simultaneously estimates the transformation operators and the latent graph. This estimator is based on the partial correlation operator, which we rigorously extend from the multivariate to the functional setting. Our procedure is provably efficient, with the estimator converging to a stationary point with quantifiable statistical error. Furthermore, we show recovery of the latent graph under mild conditions. Our work is applied to analyze simultaneously acquired multimodal brain imaging data where the graph indicates functional connectivity of the brain. We present simulation and empirical results that support the benefits of joint estimation.

Statistical models are an essential tool to model, forecast and understand the hydrological processes in watersheds. In particular, the modeling of time lags associated with the time between rainfall occurrence and subsequent changes in streamflow, is of high practical importance. Since water can take a variety of flowpaths to generate streamflow, a series of distinct runoff pulses from different flowpath may combine to create the observed streamflow time series. Current state-of-the-art models are not able to sufficiently confront the problem complexity with interpretable parametrization, which would allow insights into the dynamics of the distinct flow paths for hydrological inference. The proposed Gaussian Sliding Windows Regression Model targets this problem by combining the concept of multiple windows sliding along the time axis with multiple linear regression. The window kernels, which indicate the weights applied to different time lags, are implemented via Gaussian-shaped kernels. As a result, each window can represent one flowpath and, thus, offers the potential for straightforward process inference. Experiments on simulated and real-world scenarios underline that the proposed model achieves accurate parameter estimates and competitive predictive performance, while fostering explainable and interpretable hydrological modeling.

We introduce a clipping strategy for Stochastic Gradient Descent (SGD) which uses quantiles of the gradient norm as clipping thresholds. We prove that this new strategy provides a robust and efficient optimization algorithm for smooth objectives (convex or non-convex), that tolerates heavy-tailed samples (including infinite variance) and a fraction of outliers in the data stream akin to Huber contamination. Our mathematical analysis leverages the connection between constant step size SGD and Markov chains and handles the bias introduced by clipping in an original way. For strongly convex objectives, we prove that the iteration converges to a concentrated distribution and derive high probability bounds on the final estimation error. In the non-convex case, we prove that the limit distribution is localized on a neighborhood with low gradient. We propose an implementation of this algorithm using rolling quantiles which leads to a highly efficient optimization procedure with strong robustness properties, as confirmed by our numerical experiments.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司