The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large global, multi-technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at //gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at //huggingface.co/datasets/GTSinger/GTSinger and //github.com/GTSinger/GTSinger.
Recently, there has been growing interest in the capability of multimodal large language models (MLLMs) to process high-resolution images. A common approach currently involves dynamically cropping the original high-resolution image into smaller sub-images, which are then fed into a vision encoder that was pre-trained on lower-resolution images. However, this cropping approach often truncates objects and connected areas in the original image, causing semantic breaks. To address this limitation, we introduce HyViLM, designed to process images of any resolution while retaining the overall context during encoding. Specifically, we: (i) Design a new visual encoder called Hybrid Encoder that not only encodes individual sub-images but also interacts with detailed global visual features, significantly improving the model's ability to encode high-resolution images. (ii) Propose an optimal feature fusion strategy for the dynamic cropping approach, effectively leveraging information from different layers of the vision encoder. Compared with the state-of-the-art MLLMs under the same setting, our HyViLM outperforms existing MLLMs in nine out of ten tasks. Specifically, HyViLM achieves a 9.6% improvement in performance on the TextVQA task and a 6.9% enhancement on the DocVQA task.
Current collaborative perception methods often rely on fully annotated datasets, which can be expensive to obtain in practical situations. To reduce annotation costs, some works adopt sparsely supervised learning techniques and generate pseudo labels for the missing instances. However, these methods fail to achieve an optimal confidence threshold that harmonizes the quality and quantity of pseudo labels. To address this issue, we propose an end-to-end Collaborative perception Dual Teacher-Student framework (CoDTS), which employs adaptive complementary learning to produce both high-quality and high-quantity pseudo labels. Specifically, the Main Foreground Mining (MFM) module generates high-quality pseudo labels based on the prediction of the static teacher. Subsequently, the Supplement Foreground Mining (SFM) module ensures a balance between the quality and quantity of pseudo labels by adaptively identifying missing instances based on the prediction of the dynamic teacher. Additionally, the Neighbor Anchor Sampling (NAS) module is incorporated to enhance the representation of pseudo labels. To promote the adaptive complementary learning, we implement a staged training strategy that trains the student and dynamic teacher in a mutually beneficial manner. Extensive experiments demonstrate that the CoDTS effectively ensures an optimal balance of pseudo labels in both quality and quantity, establishing a new state-of-the-art in sparsely supervised collaborative perception.
Quantization of foundational models (FMs) is significantly more challenging than traditional DNNs due to the emergence of large magnitude features called outliers. Existing outlier-aware algorithm/architecture co-design techniques either use mixed-precision, retaining outliers at high precision but compromise hardware efficiency, or quantize inliers and outliers at the same precision, improving hardware efficiency at the cost of accuracy. To address this mutual exclusivity, in this paper, we propose MicroScopiQ, a novel co-design technique that leverages pruning to complement outlier-aware quantization. MicroScopiQ retains outliers at higher precision while pruning a certain fraction of least important weights to distribute the additional outlier bits; ensuring high accuracy, aligned memory and hardware efficiency. We design a high-throughput, low overhead accelerator architecture composed of simple multi-precision INT processing elements and a novel network-on-chip called ReCoN that efficiently abstracts the complexity of supporting high-precision outliers. Additionally, unlike existing alternatives, MicroScopiQ does not assume any locality of outlier weights, enabling applicability to a broad range of FMs. Extensive experiments across various quantization settings show that MicroScopiQ achieves SoTA quantization performance while simultaneously improving inference performance by 3x and reducing energy by 2x over existing alternatives.
Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.
This paper presents the SLEGO (Software-Lego) system, a collaborative analytics platform that bridges the gap between experienced developers and novice users using a cloud-based platform with modular, reusable microservices. These microservices enable developers to share their analytical tools and workflows, while a simple graphical user interface (GUI) allows novice users to build comprehensive analytics pipelines without programming skills. Supported by a knowledge base and a Large Language Model (LLM) powered recommendation system, SLEGO enhances the selection and integration of microservices, increasing the efficiency of analytics pipeline construction. Case studies in finance and machine learning illustrate how SLEGO promotes the sharing and assembly of modular microservices, significantly improving resource reusability and team collaboration. The results highlight SLEGO's role in democratizing data analytics by integrating modular design, knowledge bases, and recommendation systems, fostering a more inclusive and efficient analytical environment.
We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. The approaches learn nonlinear state-space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and other architectures. Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning reduced dimensional representations of the nonlinear Burgers Equations, Constrained Mechanical Systems, and spatial fields of Reaction-Diffusion Systems. GD-VAEs provide methods that can be used to obtain representations in manifold latent spaces for diverse learning tasks involving dynamics.
The rise of large language models (LLMs) has highlighted the importance of prompt engineering as a crucial technique for optimizing model outputs. While experimentation with various prompting methods, such as Few-shot, Chain-of-Thought, and role-based techniques, has yielded promising results, these advancements remain fragmented across academic papers, blog posts and anecdotal experimentation. The lack of a single, unified resource to consolidate the field's knowledge impedes the progress of both research and practical application. This paper argues for the creation of an overarching framework that synthesizes existing methodologies into a cohesive overview for practitioners. Using a design-based research approach, we present the Prompt Canvas, a structured framework resulting from an extensive literature review on prompt engineering that captures current knowledge and expertise. By combining the conceptual foundations and practical strategies identified in prompt engineering, the Prompt Canvas provides a practical approach for leveraging the potential of Large Language Models. It is primarily designed as a learning resource for pupils, students and employees, offering a structured introduction to prompt engineering. This work aims to contribute to the growing discourse on prompt engineering by establishing a unified methodology for researchers and providing guidance for practitioners.
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images.They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions and unexpected changes in non-selected regions.(2) They require careful text prompt editing where the prompt should include all visual objects in the input image.To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after reconstruction and editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique that is used for the unconditional branch of classifier-free guidance as used by P2P. Extensive experimental prompt-editing results on a variety of images demonstrate qualitatively and quantitatively that our method has superior editing capabilities compared to existing and concurrent works. See our accompanying code in Stylediffusion: \url{//github.com/sen-mao/StyleDiffusion}.
Graphical overlays that layer visual elements onto charts, are effective to convey insights and context in financial narrative visualizations. However, automating graphical overlays is challenging due to complex narrative structures and limited understanding of effective overlays. To address the challenge, we first summarize the commonly used graphical overlays and narrative structures, and the proper correspondence between them in financial narrative visualizations, elected by a survey of 1752 layered charts with corresponding narratives. We then design FinFlier, a two-stage innovative system leveraging a knowledge-grounding large language model to automate graphical overlays for financial visualizations. The text-data binding module enhances the connection between financial vocabulary and tabular data through advanced prompt engineering, and the graphics overlaying module generates effective overlays with narrative sequencing. We demonstrate the feasibility and expressiveness of FinFlier through a gallery of graphical overlays covering diverse financial narrative visualizations. Performance evaluations and user studies further confirm system's effectiveness and the quality of generated layered charts.
The increasing demand for processing large volumes of data for machine learning models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this paper, we present the IMPACT: InMemory ComPuting Architecture Based on Y-FlAsh Technology for Coalesced Tsetlin Machine Inference, underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm CMOS process. Y-Flash devices have recently been demonstrated for digital and analog memory applications, offering high yield, non-volatility, and low power consumption. The IMPACT leverages the Y-Flash array to implement the inference of a novel machine learning algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. The IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved 96.3% accuracy. The IMPACT demonstrated improvements in energy efficiency, e.g., 2.23X over CNN-based ReRAM, 2.46X over Neuromorphic using NOR-Flash, and 2.06X over DNN-based PCM, suited for modern ML inference applications.