亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The sequence $(Sm(n))_{n\geqslant 0}$: $1$, $12$, $123$, $\ldots$ formed by concatenating the first $n+1$ positive integers is often called Smarandache consecutive numbers. We consider the more general case of concatenating arithmetic progressions and establish formulas to compute them. Three types of concatenation are taken into account: the right-concatenation like $(Sm(n))_{n\geqslant0}$ or the concatenation of odd integers: $1$, $13$, $135$, $\ldots$; the left-concatenation like the reverse of Smarandache consecutive numbers $(Smr(n))_{n\geqslant 0}$: $1$, $21$, $321$, $\ldots$; and the concatenation of right-concatenation and left-concatenation like $1$, $121$, $12321$, $1234321$,$\ldots$ formed by $Sm(n)$ and $Smr(n-1)$ for $n\geqslant1$, with the initial term $Sm(0)$. The resulting formulas enable fast computations of asymptotic terms of these sequences. In particular, we use our implementation in the Computer Algebra System Maple to compute billionth terms of $(Sm(n))_{n\geqslant0}$ and $(Smr(n))_{n\geqslant0}$.

相關內容

The aim in packing problems is to decide if a given set of pieces can be placed inside a given container. A packing problem is defined by the types of pieces and containers to be handled, and the motions that are allowed to move the pieces. The pieces must be placed so that in the resulting placement, they are pairwise interior-disjoint. We establish a framework which enables us to show that for many combinations of allowed pieces, containers and motions, the resulting problem is $\exists \mathbb{R}$-complete. This means that the problem is equivalent (under polynomial time reductions) to deciding whether a given system of polynomial equations and inequalities with integer coefficients has a real solution. We consider packing problems where only translations are allowed as the motions, and problems where arbitrary rigid motions are allowed, i.e., both translations and rotations. When rotations are allowed, we show that it is an $\exists \mathbb{R}$-complete problem to decide if a set of convex polygons, each of which has at most $7$ corners, can be packed into a square. Restricted to translations, we show that the following problems are $\exists \mathbb{R}$-complete: (i) pieces bounded by segments and hyperbolic curves to be packed in a square, and (ii) convex polygons to be packed in a container bounded by segments and hyperbolic curves.

Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.

We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. The expected running time of our algorithm is near-linear in $n$ and a fixed polynomial in $\Delta$, where $n$ is the number of variables and $\Delta$ is the max degree of constraints. Previously, up to similar conditions, sampling algorithms with running time polynomial in both $n$ and $\Delta$, only existed for the almost atomic case, where each constraint is violated by a small number of forbidden local configurations. Our sampling approach departs from all previous fast algorithms for sampling LLL, which were based on Markov chains. A crucial step of our algorithm is a recursive marginal sampler that is of independent interests. Within a local lemma regime, this marginal sampler can draw a random value for a variable according to its marginal distribution, at a local cost independent of the size of the CSP.

We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.

The naive importance sampling (IS) estimator generally does not work well in examples involving simultaneous inference on several targets, as the importance weights can take arbitrarily large values, making the estimator highly unstable. In such situations, alternative multiple IS estimators involving samples from multiple proposal distributions are preferred. Just like the naive IS, the success of these multiple IS estimators crucially depends on the choice of the proposal distributions. The selection of these proposal distributions is the focus of this article. We propose three methods: (i) a geometric space filling approach, (ii) a minimax variance approach, and (iii) a maximum entropy approach. The first two methods are applicable to any IS estimator, whereas the third approach is described in the context of Doss's (2010) two-stage IS estimator. For the first method, we propose a suitable measure of 'closeness' based on the symmetric Kullback-Leibler divergence, while the second and third approaches use estimates of asymptotic variances of Doss's (2010) IS estimator and Geyer's (1994) reverse logistic regression estimator, respectively. Thus, when samples from the proposal distributions are obtained by running Markov chains, we provide consistent spectral variance estimators for these asymptotic variances. The proposed methods for selecting proposal densities are illustrated using various detailed examples.

Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.

Let $X^{(n)}$ be an observation sampled from a distribution $P_{\theta}^{(n)}$ with an unknown parameter $\theta,$ $\theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(\theta)$ for a functional $f:E\mapsto {\mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}\sim P_{\theta}^{(n)}.$ Assuming that there exists an estimator $\hat \theta_n=\hat \theta_n(X^{(n)})$ of parameter $\theta$ such that $\sqrt{n}(\hat \theta_n-\theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:E\mapsto {\mathbb R}$ such that $g(\hat \theta_n)$ is an asymptotically normal estimator of $f(\theta)$ with $\sqrt{n}$ rate provided that $s>\frac{1}{1-\alpha}$ and $d\leq n^{\alpha}$ for some $\alpha\in (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(\hat \theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $\sqrt{n}(\hat \theta_n-\theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not holonomic. Therefore their power series are inaccessible by the holonomic framework. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.

In variable selection, a selection rule that prescribes the permissible sets of selected variables (called a "selection dictionary") is desirable due to the inherent structural constraints among the candidate variables. The methods that can incorporate such restrictions can improve model interpretability and prediction accuracy. Penalized regression can integrate selection rules by assigning the coefficients to different groups and then applying penalties to the groups. However, no general framework has been proposed to formalize selection rules and their applications. In this work, we establish a framework for structured variable selection that can incorporate universal structural constraints. We develop a mathematical language for constructing arbitrary selection rules, where the selection dictionary is formally defined. We show that all selection rules can be represented as a combination of operations on constructs, which can be used to identify the related selection dictionary. One may then apply some criteria to select the best model. We show that the theoretical framework can help to identify the grouping structure in existing penalized regression methods. In addition, we formulate structured variable selection into mixed-integer optimization problems which can be solved by existing software. Finally, we discuss the significance of the framework in the context of statistics.

北京阿比特科技有限公司