亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The integration of external personalized context information into document-grounded conversational systems has significant potential business value, but has not been well-studied. Motivated by the concept of personalized context-aware document-grounded conversational systems, we introduce the task of context-aware passage retrieval. We also construct a dataset specifically curated for this purpose. We describe multiple baseline systems to address this task, and propose a novel approach, Personalized Context-Aware Search (PCAS), that effectively harnesses contextual information during passage retrieval. Experimental evaluations conducted on multiple popular dense retrieval systems demonstrate that our proposed approach not only outperforms the baselines in retrieving the most relevant passage but also excels at identifying the pertinent context among all the available contexts. We envision that our contributions will serve as a catalyst for inspiring future research endeavors in this promising direction.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 數據集 · 模型評估 · 設計 · 論文 ·
2023 年 10 月 13 日

Class imbalance exists in many classification problems, and since the data is designed for accuracy, imbalance in data classes can lead to classification challenges with a few classes having higher misclassification costs. The Backblaze dataset, a widely used dataset related to hard discs, has a small amount of failure data and a large amount of health data, which exhibits a serious class imbalance. This paper provides a comprehensive overview of research in the field of imbalanced data classification. The discussion is organized into three main aspects: data-level methods, algorithmic-level methods, and hybrid methods. For each type of method, we summarize and analyze the existing problems, algorithmic ideas, strengths, and weaknesses. Additionally, the challenges of unbalanced data classification are discussed, along with strategies to address them. It is convenient for researchers to choose the appropriate method according to their needs.

Modern commercial Heating, Ventilation, and Air Conditioning (HVAC) devices form a complex and interconnected thermodynamic system with the building and outside weather conditions, and current setpoint control policies are not fully optimized for minimizing energy use and carbon emission. Given a suitable training environment, a Reinforcement Learning (RL) model is able to improve upon these policies, but training such a model, especially in a way that scales to thousands of buildings, presents many real world challenges. We propose a novel simulation-based approach, where a customized simulator is used to train the agent for each building. Our open-source simulator (available online: //github.com/google/sbsim) is lightweight and calibrated via telemetry from the building to reach a higher level of fidelity. On a two-story, 68,000 square foot building, with 127 devices, we were able to calibrate our simulator to have just over half a degree of drift from the real world over a six-hour interval. This approach is an important step toward having a real-world RL control system that can be scaled to many buildings, allowing for greater efficiency and resulting in reduced energy consumption and carbon emissions.

Massive multiple-input multiple-output (MIMO) systems are expected to play a crucial role in the 5G wireless communication systems. These advanced systems, which are being deployed since 2021, offer significant advantages over conventional communications generations. Unlike previous versions of communication, MIMO systems can transmit various probing signals through their antennas, which may or may not be correlated with each other. This waveform diversity provided by MIMO communication enables enhanced capabilities and improved performance. Numerous research papers have proposed different approaches for beamforming in MIMO communication. We anticipate that our research will provide valuable insights into the performance of different beamforming techniques for MIMO communication systems with planar arrays. We will investigate the 3D beam patterns generated by these constellations using the covariance-based MIMO communication waveform method. MATLAB simulations will be utilized to analyze and evaluate the performance of these methods.

Classifying policy documents into policy issue topics has been a long-time effort in political science and communication disciplines. Efforts to automate text classification processes for social science research purposes have so far achieved remarkable results, but there is still a large room for progress. In this work, we test the prediction performance of an alternative strategy, which requires human involvement much less than full manual coding. We use the GPT 3.5 and GPT 4 models of the OpenAI, which are pre-trained instruction-tuned Large Language Models (LLM), to classify congressional bills and congressional hearings into Comparative Agendas Project's 21 major policy issue topics. We propose three use-case scenarios and estimate overall accuracies ranging from %58-83 depending on scenario and GPT model employed. The three scenarios aims at minimal, moderate, and major human interference, respectively. Overall, our results point towards the insufficiency of complete reliance on GPT with minimal human intervention, an increasing accuracy along with the human effort exerted, and a surprisingly high accuracy achieved in the most humanly demanding use-case. However, the superior use-case achieved the %83 accuracy on the %65 of the data in which the two models agreed, suggesting that a similar approach to ours can be relatively easily implemented and allow for mostly automated coding of a majority of a given dataset. This could free up resources allowing manual human coding of the remaining %35 of the data to achieve an overall higher level of accuracy while reducing costs significantly.

Large language models are a form of artificial intelligence systems whose primary knowledge consists of the statistical patterns, semantic relationships, and syntactical structures of language1. Despite their limited forms of "knowledge", these systems are adept at numerous complex tasks including creative writing, storytelling, translation, question-answering, summarization, and computer code generation. However, they have yet to demonstrate advanced applications in natural science. Here we show how large language models can perform scientific synthesis, inference, and explanation. We present a method for using general-purpose large language models to make inferences from scientific datasets of the form usually associated with special-purpose machine learning algorithms. We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature. When a conventional machine learning system is augmented with this synthesized and inferred knowledge it can outperform the current state of the art across a range of benchmark tasks for predicting molecular properties. This approach has the further advantage that the large language model can explain the machine learning system's predictions. We anticipate that our framework will open new avenues for AI to accelerate the pace of scientific discovery.

Multimodal emotion recognition from physiological signals is receiving an increasing amount of attention due to the impossibility to control them at will unlike behavioral reactions, thus providing more reliable information. Existing deep learning-based methods still rely on extracted handcrafted features, not taking full advantage of the learning ability of neural networks, and often adopt a single-modality approach, while human emotions are inherently expressed in a multimodal way. In this paper, we propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications. Indeed, by operating in a hypercomplex domain the operations follow algebraic rules which allow to model latent relations among learned feature dimensions for a more effective fusion step. We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI surpassing a multimodal state-of-the-art network. The code of our work is freely available at //github.com/ispamm/MHyEEG.

Digital Twins (DT) are a promising concept in cyber-physical systems research due to their advanced features including monitoring and automated reasoning. Semantic technologies such as Knowledge Graphs (KG) are recently being utilized in DTs especially for information modelling. Building on this move, this paper proposes a pipeline for semantic association rule learning in DTs using KGs and time series data. In addition to this initial pipeline, we also propose new semantic association rule criterion. The approach is evaluated on an industrial water network scenario. Initial evaluation shows that the proposed approach is able to learn a high number of association rules with semantic information which are more generalizable. The paper aims to set a foundation for further work on using semantic association rule learning especially in the context of industrial applications.

An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司