亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Throughout schooling, students are tested on reading comprehension and logical reasoning. Students have developed various strategies for completing such exams, some of which are generally thought to outperform others. One such strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer without full knowledge of the information required to solve the question. This paper examines the effectiveness of applying such a strategy to train transfer learning models to solve reading comprehension and logical reasoning questions. The models were evaluated on the ReClor dataset, a challenging reading comprehension and logical reasoning benchmark. While previous studies targeted logical reasoning skills, we focus on a general training method and model architecture. We propose the polytuplet loss function, an extension of the triplet loss function, to ensure prioritization of learning the relative correctness of answer choices over learning the true accuracy of each choice. Our results indicate that models employing polytuplet loss outperform existing baseline models. Although polytuplet loss is a promising alternative to other contrastive loss functions, further research is required to quantify the benefits it may present.

相關內容

Recent studies show that sentence-level extractive QA, i.e., based on Answer Sentence Selection (AS2), is outperformed by Generation-based QA (GenQA) models, which generate answers using the top-k answer sentences ranked by AS2 models (a la retrieval-augmented generation style). In this paper, we propose a novel training paradigm for GenQA using supervision from automatic QA evaluation models (GAVA). Specifically, we propose three strategies to transfer knowledge from these QA evaluation models to a GenQA model: (i) augmenting training data with answers generated by the GenQA model and labelled by GAVA (either statically, before training, or (ii) dynamically, at every training epoch); and (iii) using the GAVA score for weighting the generator loss during the learning of the GenQA model. We evaluate our proposed methods on two academic and one industrial dataset, obtaining a significant improvement in answering accuracy over the previous state of the art.

Reasoning on knowledge graphs is a challenging task because it utilizes observed information to predict the missing one. Specifically, answering first-order logic formulas is of particular interest, because of its clear syntax and semantics. Recently, the prevailing method is query embedding which learns the embedding of a set of entities and treats logic operations as set operations. Though there has been much research following the same methodology, it lacks a systematic inspection from the standpoint of logic. In this paper, we characterize the scope of queries investigated previously and precisely identify the gap between it and the whole family of existential formulas. Moreover, we develop a new dataset containing ten new formulas and discuss the new challenges arising concurrently. Finally, we propose a new inference algorithm from fuzzy logic theory with provable reasoning capability. Empirical results show that our method succeeds in outperforming the previous methods in both the new dataset and the existing dataset.

We present an accurate and interpretable method for answer extraction in machine reading comprehension that is reminiscent of case-based reasoning (CBR) from classical AI. Our method (CBR-MRC) builds on the hypothesis that contextualized answers to similar questions share semantic similarities with each other. Given a target question, CBR-MRC retrieves a set of similar questions from a memory of observed cases and predicts an answer by selecting the span in the target context that is most similar to the contextualized representations of answers in the retrieved cases. The semi-parametric nature of our approach allows CBR-MRC to attribute a prediction to the specific set of cases used during inference, making it a desirable choice for building reliable and debuggable QA systems. We show that CBR-MRC achieves high test accuracy comparable with large reader models, outperforming baselines by 11.5 and 8.4 EM on NaturalQuestions and NewsQA, respectively. Further, we also demonstrate the ability of CBR-MRC in identifying not just the correct answer tokens but also the span with the most relevant supporting evidence. Lastly, we observe that contexts for certain question types show higher lexical diversity than others and find CBR-MRC to be robust to these variations while performance using fully-parametric methods drops.

The excellent performance of deep neural networks is usually accompanied by a large number of parameters and computations, which have limited their usage on the resource-limited edge devices. To address this issue, abundant methods such as pruning, quantization and knowledge distillation have been proposed to compress neural networks and achieved significant breakthroughs. However, most of these compression methods focus on the architecture or the training method of neural networks but ignore the influence from data augmentation. In this paper, we revisit the usage of data augmentation in model compression and give a comprehensive study on the relation between model sizes and their optimal data augmentation policy. To sum up, we mainly have the following three observations: (A) Models in different sizes prefer data augmentation with different magnitudes. Hence, in iterative pruning, data augmentation with varying magnitudes leads to better performance than data augmentation with a consistent magnitude. (B) Data augmentation with a high magnitude may significantly improve the performance of large models but harm the performance of small models. Fortunately, small models can still benefit from strong data augmentations by firstly learning them with "additional parameters" and then discard these "additional parameters" during inference. (C) The prediction of a pre-trained large model can be utilized to measure the difficulty of data augmentation. Thus it can be utilized as a criterion to design better data augmentation policies. We hope this paper may promote more research on the usage of data augmentation in model compression.

Recent research on transformer-based language models investigates their reasoning ability over logical rules expressed in natural language text. However, their logic is not yet well-understood as we cannot explain the abstractions made by the models that help them in reasoning. These models are criticized for merely memorizing complex patterns in the data, which often creates issues for their generalizability in unobserved situations. In this work, we analyze the use of probabilistic logical rules in transformer-based language models. In particular, we propose a new approach, Probabilistic Constraint Training (PCT), that explicitly models probabilistic logical reasoning by imposing the rules of reasoning as constraints during training. We create a new QA benchmark for evaluating probabilistic reasoning over uncertain textual rules, which creates instance-specific rules, unlike the only existing relevant benchmark. Experimental results show that our proposed technique improves the base language models' accuracy and explainability when probabilistic logical reasoning is required for question answering. Moreover, we show that the learned probabilistic reasoning abilities are transferable to novel situations.

Deep learning models can be vulnerable to recovery attacks, raising privacy concerns to users, and widespread algorithms such as empirical risk minimization (ERM) often do not directly enforce safety guarantees. In this paper, we study the safety of ERM-trained models against a family of powerful black-box attacks. Our analysis quantifies this safety via two separate terms: (i) the model stability with respect to individual training samples, and (ii) the feature alignment between the attacker query and the original data. While the first term is well established in learning theory and it is connected to the generalization error in classical work, the second one is, to the best of our knowledge, novel. Our key technical result provides a precise characterization of the feature alignment for the two prototypical settings of random features (RF) and neural tangent kernel (NTK) regression. This proves that privacy strengthens with an increase in the generalization capability, unveiling also the role of the activation function. Numerical experiments show a behavior in agreement with our theory not only for the RF and NTK models, but also for deep neural networks trained on standard datasets (MNIST, CIFAR-10).

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司