亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel framework enabling end-users to perform the management of complex robotic workplaces using a tablet and augmented reality. The framework allows users to commission the workplace comprising different types of robots, machines, or services irrespective of the vendor, set task-important points in space, specify program steps, generate a code, and control its execution. More users can collaborate simultaneously, for instance, within a large-scale workplace. Spatially registered visualization and programming enable a fast and easy understanding of workplace processes, while high precision is achieved by combining kinesthetic teaching with specific graphical tools for relative manipulation of poses. A visually defined program is for execution translated into Python representation, allowing efficient involvement of experts. The system was designed and developed in cooperation with a system integrator based on an offline printed circuit board testing use case, and its user interface was evaluated multiple times during the development. The latest evaluation was performed by three experts and indicates the high potential of the solution.

相關內容

The primary objective of this paper is to investigate distributed dynamic programming (DP) and distributed temporal difference (TD) learning algorithms for networked multi-agent Markov decision problems (MAMDPs). In our study, we adopt a distributed multi-agent framework where individual agents have access only to their own rewards, lacking insights into the rewards of other agents. Additionally, each agent has the ability to share its parameters with neighboring agents through a communication network, represented by a graph. Our contributions can be summarized in two key points: 1) We introduce a novel distributed DP, inspired by the averaging consensus method in the continuous-time domain. The convergence of this DP is assessed through control theory perspectives. 2) Building upon the aforementioned DP, we devise a new distributed TD-learning algorithm and prove its convergence. A standout feature of our proposed distributed DP is its incorporation of two independent dynamic systems, each with a distinct role. This characteristic sets the stage for a novel distributed TD-learning strategy, the convergence of which can be directly established using the Borkar-Meyn theorem.

Hotword customization is one of the important issues remained in ASR field - it is of value to enable users of ASR systems to customize names of entities, persons and other phrases. The past few years have seen both implicit and explicit modeling strategies for ASR contextualization developed. While these approaches have performed adequately, they still exhibit certain shortcomings, such as instability in effectiveness, especially in non-autoregressive ASR models. In this paper we propose Semantic-augmented Contextual-Paraformer (SeACo-Paraformer) a novel NAR based ASR system with flexible and effective hotword customization ability. It combines the accuracy of the AED-based model, the efficiency of the NAR model, and the excellent performance in contextualization. In tens of thousands of hours industrial big data experiments, our proposed model outperforms strong baselines in customization and general ASR tasks. Besides, we explore an efficient way to filter large scale incoming hotwords for further improvement.

Metaverse provides users with a novel experience through immersive multimedia technologies. Along with the rapid user growth, numerous events bursting in the metaverse necessitate an announcer to help catch and monitor ongoing events. However, systems on the market primarily serve for esports competitions and rely on human directors, making it challenging to provide 24-hour delivery in the metaverse persistent world. To fill the blank, we proposed a three-stage architecture for metaverse announcers, which is designed to identify events, position cameras, and blend between shots. Based on the architecture, we introduced a Metaverse Announcer User Experience (MAUE) model to identify the factors affecting the users' Quality of Experience (QoE) from a human-centered perspective. In addition, we implemented \textit{MetaCast}, a practical self-driven metaverse announcer in a university campus metaverse prototype, to conduct user studies for MAUE model. The experimental results have effectively achieved satisfactory announcer settings that align with the preferences of most users, encompassing parameters such as video transition rate, repetition rate, importance threshold value, and image composition.

Our work presents a novel spectrum-inspired learning-based approach for generating clothing deformations with dynamic effects and personalized details. Existing methods in the field of clothing animation are limited to either static behavior or specific network models for individual garments, which hinders their applicability in real-world scenarios where diverse animated garments are required. Our proposed method overcomes these limitations by providing a unified framework that predicts dynamic behavior for different garments with arbitrary topology and looseness, resulting in versatile and realistic deformations. First, we observe that the problem of bias towards low frequency always hampers supervised learning and leads to overly smooth deformations. To address this issue, we introduce a frequency-control strategy from a spectral perspective that enhances the generation of high-frequency details of the deformation. In addition, to make the network highly generalizable and able to learn various clothing deformations effectively, we propose a spectral descriptor to achieve a generalized description of the global shape information. Building on the above strategies, we develop a dynamic clothing deformation estimator that integrates frequency-controllable attention mechanisms with long short-term memory. The estimator takes as input expressive features from garments and human bodies, allowing it to automatically output continuous deformations for diverse clothing types, independent of mesh topology or vertex count. Finally, we present a neural collision handling method to further enhance the realism of garments. Our experimental results demonstrate the effectiveness of our approach on a variety of free-swinging garments and its superiority over state-of-the-art methods.

Compared to general document analysis tasks, form document structure understanding and retrieval are challenging. Form documents are typically made by two types of authors; A form designer, who develops the form structure and keys, and a form user, who fills out form values based on the provided keys. Hence, the form values may not be aligned with the form designer's intention (structure and keys) if a form user gets confused. In this paper, we introduce Form-NLU, the first novel dataset for form structure understanding and its key and value information extraction, interpreting the form designer's intent and the alignment of user-written value on it. It consists of 857 form images, 6k form keys and values, and 4k table keys and values. Our dataset also includes three form types: digital, printed, and handwritten, which cover diverse form appearances and layouts. We propose a robust positional and logical relation-based form key-value information extraction framework. Using this dataset, Form-NLU, we first examine strong object detection models for the form layout understanding, then evaluate the key information extraction task on the dataset, providing fine-grained results for different types of forms and keys. Furthermore, we examine it with the off-the-shelf pdf layout extraction tool and prove its feasibility in real-world cases.

This paper presents the development of a software tool that enables the translation of first-order predicate logic into relation algebra. The tool was developed using the Z3 theorem prover, by leveraging its capabilities to enhance reliability, generate code, and expedite the development process. The resulting standalone Python program allows users to translate first-order logic expressions into relation algebra, eliminating the need to work with relation algebra explicitly. This paper outlines the theoretical background of first-order logic, relation algebra, and the translation process. It also describes the implementation details, including validation of the tool using Z3 for testing correctness, and discusses deviations from the original translation procedure. By demonstrating the feasibility of utilizing first-order logic as an alternative language for expressing relation algebra, this tool paves the way for integrating first-order logic into tools that traditionally rely on relation algebra as their input language.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司