Citizen-focused democratic processes where participants deliberate on alternatives and then vote to make the final decision are increasingly popular today. While the computational social choice literature has extensively investigated voting rules, there is limited work that explicitly looks at the interplay of the deliberative process and voting. In this paper, we build a deliberation model using established models from the opinion-dynamics literature and study the effect of different deliberation mechanisms on voting outcomes achieved when using well-studied voting rules. Our results show that deliberation generally improves welfare and representation guarantees, but the results are sensitive to how the deliberation process is organized. We also show, experimentally, that simple voting rules, such as approval voting, perform as well as more sophisticated rules such as proportional approval voting or method of equal shares if deliberation is properly supported. This has ramifications on the practical use of such voting rules in citizen-focused democratic processes.
Over the past few years, the (parameterized) complexity landscape of constructive control for many prevalent approval-based multiwinner voting (ABMV) rules has been explored. We expand these results in two directions. First, we study constructive control for sequential Thiele's rules. Second, we study destructive counterparts of these problems. Our exploration leads to a comprehensive understanding of the complexity of these problems. Along the way, we also study several interesting axiomatic properties of ABMV rules, and obtain generic results for rules fulfilling these properties. In particular, we show that for many rules satisfying these properties, election control problems are generally hard to solve from a parameterized complexity point of view, even when restricted to certain special cases.
We consider the following well studied problem of metric distortion in social choice. Suppose we have an election with $n$ voters and $m$ candidates who lie in a shared metric space. We would like to design a voting rule that chooses a candidate whose average distance to the voters is small. However, instead of having direct access to the distances in the metric space, each voter gives us a ranked list of the candidates in order of distance. Can we design a rule that regardless of the election instance and underlying metric space, chooses a candidate whose cost differs from the true optimum by only a small factor (known as the distortion)? A long line of work culminated in finding deterministic voting rules with metric distortion $3$, which is the best possible for deterministic rules and many other classes of voting rules. However, without any restrictions, there is still a significant gap in our understanding: Even though the best lower bound is substantially lower at $2.112$, the best upper bound is still $3$, which is attained even by simple rules such as Random Dictatorship. Finding a rule that guarantees distortion $3 - \varepsilon$ for some constant $\varepsilon $ has been a major challenge in computational social choice. In this work, we give a rule that guarantees distortion less than $2.753$. To do so we study a handful of voting rules that are new to the problem. One is Maximal Lotteries, a rule based on the Nash equilibrium of a natural zero-sum game which dates back to the 60's. The others are novel rules that can be thought of as hybrids of Random Dictatorship and the Copeland rule. Though none of these rules can beat distortion $3$ alone, a careful randomization between Maximal Lotteries and any of the novel rules can.
This paper considers two well-studied problems \textsc{Minimum Fill-In} (\textsc{Min Fill-In}) and \textsc{Treewidth}. Since both problems are \textsf{NP}-hard, various reduction rules simplifying an input graph have been intensively studied to better understand the structural properties relevant to these problems. Bodlaender at el. introduced the concept of a safe edge that is included in a solution of the \textsc{Minimum Fill-In} problem and showed some initial results. In this paper, we extend their result and prove a new condition for an edge set to be safe. This in turn helps us to construct a novel reduction tool for \textsc{Min Fill-In} that we use to answer other questions related to the problem. In this paper, we also study another interesting research question: Whether there exists a triangulation that answers both problems \textsc{Min Fill-In} and \textsc{Treewidth}. To formalise our study, we introduce a new parameter reflecting a distance of triangulations optimising both problems. We present some initial results regarding this parameter and study graph classes where both problems can be solved with one triangulation.
Performance complementarity of solvers available to tackle black-box optimization problems gives rise to the important task of algorithm selection (AS). Automated AS approaches can help replace tedious and labor-intensive manual selection, and have already shown promising performance in various optimization domains. Automated AS relies on machine learning (ML) techniques to recommend the best algorithm given the information about the problem instance. Unfortunately, there are no clear guidelines for choosing the most appropriate one from a variety of ML techniques. Tree-based models such as Random Forest or XGBoost have consistently demonstrated outstanding performance for automated AS. Transformers and other tabular deep learning models have also been increasingly applied in this context. We investigate in this work the impact of the choice of the ML technique on AS performance. We compare four ML models on the task of predicting the best solver for the BBOB problems for 7 different runtime budgets in 2 dimensions. While our results confirm that a per-instance AS has indeed impressive potential, we also show that the particular choice of the ML technique is of much minor importance.
We study the election control problem with multi-votes, where each voter can present a single vote according different views (or layers, we use "layer" to represent "view"). For example, according to the attributes of candidates, such as: education, hobby or the relationship of candidates, a voter may present different preferences for the same candidate set. Here, we consider a new model of election control that by assigning different rules to the votes from different layers, makes the special candidate p being the winner of the election (a rule can be assigned to different layers). Assuming a set of candidates C among a special candidate "p", a set of voters V, and t layers, each voter gives t votes over all candidates, one for each layer, a set of voting rules R, the task is to find an assignment of rules to each layer that p is acceptable for voters (possible winner of the election). Three models are considered (denoted as sum-model, max-model, and min-model) to measure the satisfaction of each voter. In this paper, we analyze the computational complexity of finding such a rule assignment, including classical complexity and parameterized complexity. It is interesting to find out that 1) it is NP-hard even if there are only two voters in the sum-model, or there are only two rules in sum-model and max-model; 2) it is intractable with the number of layers as parameter for all of three models; 3) even the satisfaction of each vote is set as dichotomous, 1 or 0, it remains hard to find out an acceptable rule assignment. Furthermore, we also get some other intractable and tractable results.
Consider a mechanism that cannot observe how many players there are directly, but instead must rely on their self-reports to know how many are participating. Suppose the players can create new identities to report to the auctioneer at some cost $c$. The usual mechanism design paradigm is equivalent to implicitly assuming that $c$ is infinity for all players, while the usual Sybil attacks literature is that it is zero or finite for one player (the attacker) and infinity for everyone else (the 'honest' players). The false-name proof literature largely assumes the cost to be 0. We consider a model with variable costs that unifies these disparate streams. A paradigmatic normal form game can be extended into a Sybil game by having the action space by the product of the feasible set of identities to create action where each player chooses how many players to present as in the game and their actions in the original normal form game. A mechanism is (dominant) false-name proof if it is (dominant) incentive-compatible for all the players to self-report as at most one identity. We study mechanisms proposed in the literature motivated by settings where anonymity and self-identification are the norms, and show conditions under which they are not Sybil-proof. We characterize a class of dominant Sybil-proof mechanisms for reward sharing and show that they achieve the efficiency upper bound. We consider the extension when agents can credibly commit to the strategy of their sybils and show how this can break mechanisms that would otherwise be false-name proof.
When comparing two independent groups, shift functions are basically techniques that compare multiple quantiles rather than a single measure of location, the goal being to get a more detailed understanding of how the distributions differ. Various versions have been proposed and studied. This paper deals with extensions of these methods to main effects and interactions in a between-by-between, 2-by-2 design. Two approaches are studied, one that compares the deciles of the distributions, and one that has a certain connection to the Wilcoxon-Mann-Whitney method. For both methods, we propose an implementation using the Harrell-Davis quantile estimator, used in conjunction with a percentile bootstrap approach. We report results of simulations of false and true positive rates.
This paper considers a joint survival and mixed-effects model to explain the survival time from longitudinal data and high-dimensional covariates. The longitudinal data is modeled using a nonlinear effects model, where the regression function serves as a link function incorporated into a Cox model as a covariate. In that way, the longitudinal data is related to the survival time at a given time. Additionally, the Cox model takes into account the inclusion of high-dimensional covariates. The main objectives of this research are two-fold: first, to identify the relevant covariates that contribute to explaining survival time, and second, to estimate all unknown parameters of the joint model. For that purpose, we consider the maximization of a Lasso penalized likelihood. To tackle the optimization problem, we implement a pre-conditioned stochastic gradient to handle the latent variables of the nonlinear mixed-effects model associated with a proximal operator to manage the non-differentiability of the penalty. We provide relevant simulations that showcase the performance of the proposed variable selection and parameters' estimation method in the joint modeling of a Cox and logistic model.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.