Deep neural networks are powerful tools to model observations over time with non-linear patterns. Despite the widespread use of neural networks in such settings, most theoretical developments of deep neural networks are under the assumption of independent observations, and theoretical results for temporally dependent observations are scarce. To bridge this gap, we study theoretical properties of deep neural networks on modeling non-linear time series data. Specifically, non-asymptotic bounds for prediction error of (sparse) feed-forward neural network with ReLU activation function is established under mixing-type assumptions. These assumptions are mild such that they include a wide range of time series models including auto-regressive models. Compared to independent observations, established convergence rates have additional logarithmic factors to compensate for additional complexity due to dependence among data points. The theoretical results are supported via various numerical simulation settings as well as an application to a macroeconomic data set.
End-to-end generative methods are considered a more promising solution for image restoration in physics-based vision compared with the traditional deconstructive methods based on handcrafted composition models. However, existing generative methods still have plenty of room for improvement in quantitative performance. More crucially, these methods are considered black boxes due to weak interpretability and there is rarely a theory trying to explain their mechanism and learning process. In this study, we try to re-interpret these generative methods for image restoration tasks using information theory. Different from conventional understanding, we analyzed the information flow of these methods and identified three sources of information (extracted high-level information, retained low-level information, and external information that is absent from the source inputs) are involved and optimized respectively in generating the restoration results. We further derived their learning behaviors, optimization objectives, and the corresponding information boundaries by extending the information bottleneck principle. Based on this theoretic framework, we found that many existing generative methods tend to be direct applications of the general models designed for conventional generation tasks, which may suffer from problems including over-invested abstraction processes, inherent details loss, and vanishing gradients or imbalance in training. We analyzed these issues with both intuitive and theoretical explanations and proved them with empirical evidence respectively. Ultimately, we proposed general solutions or ideas to address the above issue and validated these approaches with performance boosts on six datasets of three different image restoration tasks.
In deep learning, neural networks serve as noisy channels between input data and its representation. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal performance in information transmission and representation. While considerable efforts are concentrated on realizing optimal channel properties during network optimization, we study a frequently overlooked possibility that neural networks can be initialized toward optimal channels. Our theory, consistent with experimental validation, identifies primary mechanics underlying this unknown possibility and suggests intrinsic connections between statistical physics and deep learning. Unlike the conventional theories that characterize neural networks applying the classic mean-filed approximation, we offer analytic proof that this extensively applied simplification scheme is not valid in studying neural networks as information channels. To fill this gap, we develop a corrected mean-field framework applicable for characterizing the limiting behaviors of information propagation in neural networks without strong assumptions on inputs. Based on it, we propose an analytic theory to prove that mutual information maximization is realized between inputs and propagated signals when neural networks are initialized at dynamic isometry, a case where information transmits via norm-preserving mappings. These theoretical predictions are validated by experiments on real neural networks, suggesting the robustness of our theory against finite-size effects. Finally, we analyze our findings with information bottleneck theory to confirm the precise relations among dynamic isometry, mutual information maximization, and optimal channel properties in deep learning.
Derived from spiking neuron models via the diffusion approximation, the moment activation (MA) faithfully captures the nonlinear coupling of correlated neural variability. However, numerical evaluation of the MA faces significant challenges due to a number of ill-conditioned Dawson-like functions. By deriving asymptotic expansions of these functions, we develop an efficient numerical algorithm for evaluating the MA and its derivatives ensuring reliability, speed, and accuracy. We also provide exact analytical expressions for the MA in the weak fluctuation limit. Powered by this efficient algorithm, the MA may serve as an effective tool for investigating the dynamics of correlated neural variability in large-scale spiking neural circuits.
We study the compute-optimal trade-off between model and training data set sizes for large neural networks. Our result suggests a linear relation similar to that supported by the empirical analysis of Chinchilla. While that work studies transformer-based large language models trained on the MassiveText corpus (gopher), as a starting point for development of a mathematical theory, we focus on a simpler learning model and data generating process, each based on a neural network with a sigmoidal output unit and single hidden layer of ReLU activation units. We establish an upper bound on the minimal information-theoretically achievable expected error as a function of model and data set sizes. We then derive allocations of computation that minimize this bound. We present empirical results which suggest that this approximation correctly identifies an asymptotic linear compute-optimal scaling. This approximation can also generate new insights. Among other things, it suggests that, as the input space dimension or latent space complexity grows, as might be the case for example if a longer history of tokens is taken as input to a language model, a larger fraction of the compute budget should be allocated to growing the learning model rather than training data set.
In this work we analyze the inverse problem of recovering the space-dependent potential coefficient in an elliptic / parabolic problem from distributed observation. We establish novel (weighted) conditional stability estimates under very mild conditions on the problem data. Then we provide an error analysis of a standard reconstruction scheme based on the standard output least-squares formulation with Tikhonov regularization (by an $H^1$-seminorm penalty), which is then discretized by the Galerkin finite element method with continuous piecewise linear finite elements in space (and also backward Euler method in time for parabolic problems). We present a detailed analysis of the discrete scheme, and provide convergence rates in a weighted $L^2(\Omega)$ for discrete approximations with respect to the exact potential. The error bounds are explicitly dependent on the noise level, regularization parameter and discretization parameter(s). Under suitable conditions, we also derive error estimates in the standard $L^2(\Omega)$ and interior $L^2$ norms. The analysis employs sharp a priori error estimates and nonstandard test functions. Several numerical experiments are given to complement the theoretical analysis.
This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any H\"{o}lder smooth function up to a given approximation error in H\"{o}lder norms in such a way that all weights of this neural network are bounded by $1$. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
Topological data analysis (TDA) is a branch of computational mathematics, bridging algebraic topology and data science, that provides compact, noise-robust representations of complex structures. Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture, resulting in high-dimensional, difficult-to-interpret internal representations of input data. As DNNs become more ubiquitous across multiple sectors of our society, there is increasing recognition that mathematical methods are needed to aid analysts, researchers, and practitioners in understanding and interpreting how these models' internal representations relate to the final classification. In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification. We use two common TDA approaches to explore several methods for modeling hidden-layer activations as high-dimensional point clouds, and provide experimental evidence that these point clouds capture valuable structural information about the model's process. First, we demonstrate that a distance metric based on persistent homology can be used to quantify meaningful differences between layers, and we discuss these distances in the broader context of existing representational similarity metrics for neural network interpretability. Second, we show that a mapper graph can provide semantic insight into how these models organize hierarchical class knowledge at each layer. These observations demonstrate that TDA is a useful tool to help deep learning practitioners unlock the hidden structures of their models.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.