We present Prequal (Probing to Reduce Queuing and Latency), a load balancer for distributed multi-tenant systems. Prequal aims to minimize real-time request latency in the presence of heterogeneous server capacities and non-uniform, time-varying antagonist load. It actively probes server load to leverage the power-of-d-choices paradigm, extending it with asynchronous and reusable probes. Cutting against received wisdom, Prequal does not balance CPU load, but instead selects servers according to estimated latency and active requests-in-flight (RIF). We explore its major design features on a testbed system and evaluate it on YouTube, where it has been deployed for more than two years. Prequal has dramatically decreased tail latency, error rates, and resource use, enabling YouTube and other production systems at Google to run at much higher utilization.
Software Engineering (SE) Pre-trained Language Models (PLMs), such as CodeBERT, are pre-trained on large code corpora, and their learned knowledge has shown success in transferring into downstream tasks (e.g., code clone detection) through the fine-tuning of PLMs. In Natural Language Processing (NLP), an alternative in transferring the knowledge of PLMs is explored through the use of adapter, a compact and parameter efficient module that is inserted into a PLM. Although the use of adapters has shown promising results in many NLP-based downstream tasks, their application and exploration in SE-based downstream tasks are limited. Here, we study the knowledge transfer using adapters on multiple down-stream tasks including cloze test, code clone detection, and code summarization. These adapters are trained on code corpora and are inserted into a PLM that is pre-trained on English corpora or code corpora. We called these PLMs as NL-PLM and C-PLM, respectively. We observed an improvement in results using NL-PLM over a PLM that does not have adapters, and this suggested that adapters can transfer and utilize useful knowledge from NL-PLM to SE tasks. The results are sometimes on par with or exceed the results of C-PLM; while being more efficient in terms of the number of parameters and training time. Interestingly, adapters inserted into a C-PLM generally yield better results than a traditional fine-tuned C-PLM. Our results open new directions to build more compact models for SE tasks.
Recently, increasing attention has been focused drawn on to improve the ability of Large Language Models (LLMs) to perform complex reasoning. However, previous methods, such as Chain-of-Thought and Self-Consistency, mainly follow Direct Reasoning (DR) frameworks, so they will meet difficulty in solving numerous real-world tasks which can hardly be solved via DR. Therefore, to strengthen the reasoning power of LLMs, this paper proposes a novel Indirect Reasoning (IR) method that employs the logic of contrapositives and contradictions to tackle IR tasks such as factual reasoning and mathematic proof. Specifically, our methodology comprises two steps. Firstly, we leverage the logical equivalence of contrapositive to augment the data and rules to enhance the comprehensibility of LLMs. Secondly, we design a set of prompt templates to trigger LLMs to conduct IR based on proof by contradiction that is logically equivalent to the original DR process. Our IR method is simple yet effective and can be straightforwardly integrated with existing DR methods to further boost the reasoning abilities of LLMs. The experimental results on popular LLMs, such as GPT-3.5-turbo and Gemini-pro, show that our IR method enhances the overall accuracy of factual reasoning by 27.33% and mathematical proof by 31.43%, when compared with traditional DR methods. Moreover, the methods combining IR and DR significantly outperform the methods solely using IR or DR, further demonstrating the effectiveness of our strategy.
The coverage and composition of the pretraining data significantly impacts the generalization ability of Large Language Models (LLMs). Despite its importance, recent LLMs still rely on heuristics and trial and error to increase or reduce the influence of data-domains. We propose DOmain reweighting with Generalization Estimation (DoGE), which optimizes the probability of sampling from each domain (domain weights) in a principled way. Our approach is a two-stage process consisting of (i) training a proxy model to obtain domain weights using a bi-level optimization algorithm; (ii) training a larger base model by sampling training domains according to the learned domain weights. In our experiments, we extensively show how DoGE improves the generalization of the base model to any target data mixture. On the SlimPajama dataset, our base model gets better perplexity and few-shot reasoning accuracies across $6$ tasks compared to baseline methods. Moreover, aiming to generalize to out-of-domain target tasks, which is unseen in the pretraining corpus (OOD domain), DoGE can effectively identify inter-domain dependencies, and consistently achieves better test perplexity on the target domain.
Weakly Supervised Entity Alignment (EA) is the task of identifying equivalent entities across diverse knowledge graphs (KGs) using only a limited number of seed alignments. Despite substantial advances in aggregation-based weakly supervised EA, the underlying mechanisms in this setting remain unexplored. In this paper, we present a propagation perspective to analyze weakly supervised EA and explain the existing aggregation-based EA models. Our theoretical analysis reveals that these models essentially seek propagation operators for pairwise entity similarities. We further prove that, despite the structural heterogeneity of different KGs, the potentially aligned entities within aggregation-based EA models have isomorphic subgraphs, which is the core premise of EA but has not been investigated. Leveraging this insight, we introduce a potential isomorphism propagation operator to enhance the propagation of neighborhood information across KGs. We develop a general EA framework, PipEA, incorporating this operator to improve the accuracy of every type of aggregation-based model without altering the learning process. Extensive experiments substantiate our theoretical findings and demonstrate PipEA's significant performance gains over state-of-the-art weakly supervised EA methods. Our work not only advances the field but also enhances our comprehension of aggregation-based weakly supervised EA.
Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.
GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, temperature-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose \textit{Logit-scaling GFlowNets} (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at \url{//github.com/dbsxodud-11/logit-gfn}
Large Language Models (LLMs) frequently suffer from knowledge-intensive questions, often being inconsistent by providing different outputs despite given the same input. The response quality worsens when the user expresses a firm opposing stance which causes the LLMs to adjust its response despite the correct initial one. These behaviors decrease the reliability and validity of the responses provided by these models. In this paper, we attempt to 1) raise awareness of the inherent risks that follow from overly relying on AI agents like ChatGPT by showing how Chain-of-Feedback (CoF) triggers LLMs to deviate more from the actual answer and 2) suggest a novel prompting method, Recursive Chain of Feedback (R-CoF), that we are conducting further study. The CoF system takes in an open-ended multi-step question. Then, we repetitively provide meaningless feedback requesting another attempt. Our preliminary experiments show that such feedback only decreases the quality of the response. On the other hand, to mitigate the effects of the aforementioned inconsistencies, we present a novel method of recursively revising the initial incorrect reasoning provided by the LLM by repetitively breaking down each incorrect step into smaller individual problems.
We introduce AlphaRank, an artificial intelligence approach to address the fixed-budget ranking and selection (R&S) problems. We formulate the sequential sampling decision as a Markov decision process and propose a Monte Carlo simulation-based rollout policy that utilizes classic R&S procedures as base policies for efficiently learning the value function of stochastic dynamic programming. We accelerate online sample-allocation by using deep reinforcement learning to pre-train a neural network model offline based on a given prior. We also propose a parallelizable computing framework for large-scale problems, effectively combining "divide and conquer" and "recursion" for enhanced scalability and efficiency. Numerical experiments demonstrate that the performance of AlphaRank is significantly improved over the base policies, which could be attributed to AlphaRank's superior capability on the trade-off among mean, variance, and induced correlation overlooked by many existing policies.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.