Analysis of signals with oscillatory modes with crossover instantaneous frequencies is a challenging problem in time series analysis. One way to handle this problem is lifting the 2-dimensional time-frequency representation to a 3-dimensional representation, called time-frequency-chirp rate (TFC) representation, by adding one extra chirp rate parameter so that crossover frequencies are disentangles in higher dimension. The chirplet transform is an algorithm for this lifting idea. However, in practice we found that it has a stronger "blurring" effect in the chirp rate axis, which limits its application in real world data. Moreover, to our knowledge, we have limited mathematical understanding of the chirplet transform in the literature. Motivated by real world data challenges, in this paper, we propose the synchrosqueezed chirplet transform (SCT) that gives a concentrated TFC representation that the contrast is enhanced so that one can distinguish different modes even with crossover instantaneous frequencies. We also analyze chirplet transform and provide theoretical guarantee of SCT.
An invertible function is bi-Lipschitz if both the function and its inverse have bounded Lipschitz constants. Nowadays, most Normalizing Flows are bi-Lipschitz by design or by training to limit numerical errors (among other things). In this paper, we discuss the expressivity of bi-Lipschitz Normalizing Flows and identify several target distributions that are difficult to approximate using such models. Then, we characterize the expressivity of bi-Lipschitz Normalizing Flows by giving several lower bounds on the Total Variation distance between these particularly unfavorable distributions and their best possible approximation. Finally, we discuss potential remedies which include using more complex latent distributions.
This note proposes an algorithm for identifying the poles and residues of a meromorphic function from its noisy values on the imaginary axis. The algorithm uses M\"{o}bius transform and Prony's method in the frequency domain. Numerical results are provided to demonstrate the performance of the algorithm.
String diagrams are a powerful and intuitive graphical syntax, originated in the study of symmetric monoidal categories. In the last few years, they have found application in the modelling of various computational structures, in fields as diverse as Computer Science, Physics, Control Theory, Linguistics, and Biology. In many such proposals, the transformations of the described systems are modelled as rewrite rules of diagrams. These developments demand a mathematical foundation for string diagram rewriting: whereas rewrite theory for terms is well-understood, the two-dimensional nature of string diagrams poses additional challenges. This work systematises and expands a series of recent conference papers laying down such foundation. As first step, we focus on the case of rewrite systems for string diagrammatic theories which feature a Frobenius algebra. This situation ubiquitously appear in various approaches: for instance, in the algebraic semantics of linear dynamical systems, Frobenius structures model the wiring of circuits; in categorical quantum mechanics, they model interacting quantum observables. Our work introduces a combinatorial interpretation of string diagram rewriting modulo Frobenius structures, in terms of double-pushout hypergraph rewriting. Furthermore, we prove this interpretation to be sound and complete. In the last part, we also see that the approach can be generalised to model rewriting modulo multiple Frobenius structures. As a proof of concept, we show how to derive from these results a termination strategy for Interacting Bialgebras, an important rewrite theory in the study of quantum circuits and signal flow graphs.
Convolutional neural networks typically contain several downsampling operators, such as strided convolutions or pooling layers, that progressively reduce the resolution of intermediate representations. This provides some shift-invariance while reducing the computational complexity of the whole architecture. A critical hyperparameter of such layers is their stride: the integer factor of downsampling. As strides are not differentiable, finding the best configuration either requires cross-validation or discrete optimization (e.g. architecture search), which rapidly become prohibitive as the search space grows exponentially with the number of downsampling layers. Hence, exploring this search space by gradient descent would allow finding better configurations at a lower computational cost. This work introduces DiffStride, the first downsampling layer with learnable strides. Our layer learns the size of a cropping mask in the Fourier domain, that effectively performs resizing in a differentiable way. Experiments on audio and image classification show the generality and effectiveness of our solution: we use DiffStride as a drop-in replacement to standard downsampling layers and outperform them. In particular, we show that introducing our layer into a ResNet-18 architecture allows keeping consistent high performance on CIFAR10, CIFAR100 and ImageNet even when training starts from poor random stride configurations. Moreover, formulating strides as learnable variables allows us to introduce a regularization term that controls the computational complexity of the architecture. We show how this regularization allows trading off accuracy for efficiency on ImageNet.
Mean rewards of actions are often correlated. The form of these correlations may be complex and unknown a priori, such as the preferences of a user for recommended products and their categories. To maximize statistical efficiency, it is important to leverage these correlations when learning. We formulate a bandit variant of this problem where the correlations of mean action rewards are represented by a hierarchical Bayesian model with latent variables. Since the hierarchy can have multiple layers, we call it deep. We propose a hierarchical Thompson sampling algorithm (HierTS) for this problem, and show how to implement it efficiently for Gaussian hierarchies. The efficient implementation is possible due to a novel exact hierarchical representation of the posterior, which itself is of independent interest. We use this exact posterior to analyze the Bayes regret of HierTS in Gaussian bandits. Our analysis reflects the structure of the problem, that the regret decreases with the prior width, and also shows that hierarchies reduce the regret by non-constant factors in the number of actions. We confirm these theoretical findings empirically, in both synthetic and real-world experiments.
Closure space has proven to be a useful tool to restructure lattices and various order structures.This paper aims to provide a novel approach to characterizing some important kinds of continuous domains by means of closure spaces. By introducing an additional map into a given closure space, the notion of F-augmented generalized closure space is presented. It is shown that F-augmented generalized closure spaces generate exactly continuous domains. Moreover, the notion of approximable mapping is identified to represent Scott-continuous functions between continuous domains. These results produce a category equivalent to that of continuous domains with Scottcontinuous functions. At the same time, two subclasses of F-augmented generalized closure spaces are considered which are representations of continuous L-domains and continuous bounded complete domains, respectively.
We consider the set of pairs of orthogonal vectors in Hilbert space, which is also called the cross because it is the union of the horizontal and vertical axes in the Euclidean plane when the underlying space is the real line. Crosses, which are nonconvex sets, play a significant role in various branches of nonsmooth analysis such as feasibility problems and optimization problems. In this work, we study crosses and show that in infinite-dimensional settings, they are never weakly (sequentially) closed. Nonetheless, crosses do turn out to be proximinal (i.e., they always admit projections) and we provide explicit formulas for the projection onto the cross in all cases.
The spatial convolution layer which is widely used in the Graph Neural Networks (GNNs) aggregates the feature vector of each node with the feature vectors of its neighboring nodes. The GNN is not aware of the locations of the nodes in the global structure of the graph and when the local structures corresponding to different nodes are similar to each other, the convolution layer maps all those nodes to similar or same feature vectors in the continuous feature space. Therefore, the GNN cannot distinguish two graphs if their difference is not in their local structures. In addition, when the nodes are not labeled/attributed the convolution layers can fail to distinguish even different local structures. In this paper, we propose an effective solution to address this problem of the GNNs. The proposed approach leverages a spatial representation of the graph which makes the neural network aware of the differences between the nodes and also their locations in the graph. The spatial representation which is equivalent to a point-cloud representation of the graph is obtained by a graph embedding method. Using the proposed approach, the local feature extractor of the GNN distinguishes similar local structures in different locations of the graph and the GNN infers the topological structure of the graph from the spatial distribution of the locally extracted feature vectors. Moreover, the spatial representation is utilized to simplify the graph down-sampling problem. A new graph pooling method is proposed and it is shown that the proposed pooling method achieves competitive or better results in comparison with the state-of-the-art methods.
Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.
In this paper, we propose the Cross-Domain Adversarial Auto-Encoder (CDAAE) to address the problem of cross-domain image inference, generation and transformation. We make the assumption that images from different domains share the same latent code space for content, while having separate latent code space for style. The proposed framework can map cross-domain data to a latent code vector consisting of a content part and a style part. The latent code vector is matched with a prior distribution so that we can generate meaningful samples from any part of the prior space. Consequently, given a sample of one domain, our framework can generate various samples of the other domain with the same content of the input. This makes the proposed framework different from the current work of cross-domain transformation. Besides, the proposed framework can be trained with both labeled and unlabeled data, which makes it also suitable for domain adaptation. Experimental results on data sets SVHN, MNIST and CASIA show the proposed framework achieved visually appealing performance for image generation task. Besides, we also demonstrate the proposed method achieved superior results for domain adaptation. Code of our experiments is available in //github.com/luckycallor/CDAAE.