亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There have recently been significant advances in the accuracy of algorithms proposed for time series classification (TSC). However, a commonly asked question by real world practitioners and data scientists less familiar with the research topic, is whether the complexity of the algorithms considered state of the art is really necessary. Many times the first approach suggested is a simple pipeline of summary statistics or other time series feature extraction approaches such as TSFresh, which in itself is a sensible question; in publications on TSC algorithms generalised for multiple problem types, we rarely see these approaches considered or compared against. We experiment with basic feature extractors using vector based classifiers shown to be effective with continuous attributes in current state-of-the-art time series classifiers. We test these approaches on the UCR time series dataset archive, looking to see if TSC literature has overlooked the effectiveness of these approaches. We find that a pipeline of TSFresh followed by a rotation forest classifier, which we name FreshPRINCE, performs best. It is not state of the art, but it is significantly more accurate than nearest neighbour with dynamic time warping, and represents a reasonable benchmark for future comparison.

相關內容

服務范圍涵蓋服務創新研發的所有計算和軟件科學技術方面。IEEE服務計算事務強調算法、數學、統計和計算方法,這些方法是服務計算的核心,是面向服務的體系結構、Web服務、業務流程集成、解決方案性能管理、服務操作和管理的新興領域。官網地址:

Zero-shot text classifiers based on label descriptions embed an input text and a set of labels into the same space: measures such as cosine similarity can then be used to select the most similar label description to the input text as the predicted label. In a true zero-shot setup, designing good label descriptions is challenging because no development set is available. Inspired by the literature on Learning with Disagreements, we look at how probabilistic models of repeated rating analysis can be used for selecting the best label descriptions in an unsupervised fashion. We evaluate our method on a set of diverse datasets and tasks (sentiment, topic and stance). Furthermore, we show that multiple, noisy label descriptions can be aggregated to boost the performance.

Super-Resolution is the technique to improve the quality of a low-resolution photo by boosting its plausible resolution. The computer vision community has extensively explored the area of Super-Resolution. However, previous Super-Resolution methods require vast amounts of data for training which becomes problematic in domains where very few low-resolution, high-resolution pairs might be available. One such area is statistical downscaling, where super-resolution is increasingly being used to obtain high-resolution climate information from low-resolution data. Acquiring high-resolution climate data is extremely expensive and challenging. To reduce the cost of generating high-resolution climate information, Super-Resolution algorithms should be able to train with a limited number of low-resolution, high-resolution pairs. This paper tries to solve the aforementioned problem by introducing a semi-supervised way to perform super-resolution that can generate sharp, high-resolution images with as few as 500 paired examples. The proposed semi-supervised technique can be used as a plug-and-play module with any supervised GAN-based Super-Resolution method to enhance its performance. We quantitatively and qualitatively analyze the performance of the proposed model and compare it with completely supervised methods as well as other unsupervised techniques. Comprehensive evaluations show the superiority of our method over other methods on different metrics. We also offer the applicability of our approach in statistical downscaling to obtain high-resolution climate images.

The problem of processing very long time-series data (e.g., a length of more than 10,000) is a long-standing research problem in machine learning. Recently, one breakthrough, called neural rough differential equations (NRDEs), has been proposed and has shown that it is able to process such data. Their main concept is to use the log-signature transform, which is known to be more efficient than the Fourier transform for irregular long time-series, to convert a very long time-series sample into a relatively shorter series of feature vectors. However, the log-signature transform causes non-trivial spatial overheads. To this end, we present the method of LOweR-Dimensional embedding of log-signature (LORD), where we define an NRDE-based autoencoder to implant the higher-depth log-signature knowledge into the lower-depth log-signature. We show that the encoder successfully combines the higher-depth and the lower-depth log-signature knowledge, which greatly stabilizes the training process and increases the model accuracy. In our experiments with benchmark datasets, the improvement ratio by our method is up to 75\% in terms of various classification and forecasting evaluation metrics.

Deep learning inspired by differential equations is a recent research trend and has marked the state of the art performance for many machine learning tasks. Among them, time-series modeling with neural controlled differential equations (NCDEs) is considered as a breakthrough. In many cases, NCDE-based models not only provide better accuracy than recurrent neural networks (RNNs) but also make it possible to process irregular time-series. In this work, we enhance NCDEs by redesigning their core part, i.e., generating a continuous path from a discrete time-series input. NCDEs typically use interpolation algorithms to convert discrete time-series samples to continuous paths. However, we propose to i) generate another latent continuous path using an encoder-decoder architecture, which corresponds to the interpolation process of NCDEs, i.e., our neural network-based interpolation vs. the existing explicit interpolation, and ii) exploit the generative characteristic of the decoder, i.e., extrapolation beyond the time domain of original data if needed. Therefore, our NCDE design can use both the interpolated and the extrapolated information for downstream machine learning tasks. In our experiments with 5 real-world datasets and 12 baselines, our extrapolation and interpolation-based NCDEs outperform existing baselines by non-trivial margins.

With the rapid growth of software, using third-party libraries (TPLs) has become increasingly popular. The prosperity of the library usage has provided the software engineers with handful of methods to facilitate and boost the program development. Unfortunately, it also poses great challenges as it becomes much more difficult to manage the large volume of libraries. Researches and studies have been proposed to detect and understand the TPLs in the software. However, most existing approaches rely on syntactic features, which are not robust when these features are changed or deliberately hidden by the adversarial parties. Moreover, these approaches typically model each of the imported libraries as a whole, therefore, cannot be applied to scenarios where the host software only partially uses the library code segments. To detect both fully and partially imported TPLs at the semantic level, we propose ModX, a framework that leverages novel program modularization techniques to decompose the program into finegrained functionality-based modules. By extracting both syntactic and semantic features, it measures the distance between modules to detect similar library module reuse in the program. Experimental results show that ModX outperforms other modularization tools by distinguishing more coherent program modules with 353% higher module quality scores and beats other TPL detection tools with on average 17% better in precision and 8% better in recall.

This article presents an overview of image transformation with a secret key and its applications. Image transformation with a secret key enables us not only to protect visual information on plain images but also to embed unique features controlled with a key into images. In addition, numerous encryption methods can generate encrypted images that are compressible and learnable for machine learning. Various applications of such transformation have been developed by using these properties. In this paper, we focus on a class of image transformation referred to as learnable image encryption, which is applicable to privacy-preserving machine learning and adversarially robust defense. Detailed descriptions of both transformation algorithms and performances are provided. Moreover, we discuss robustness against various attacks.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.

北京阿比特科技有限公司