Arbitrary pattern formation (\textsc{Apf}) is a well-studied problem in swarm robotics. The problem has been considered in two different settings so far; one is in a plane and another is in an infinite grid. This work deals with the problem in an infinite rectangular grid setting. The previous works in literature dealing with \textsc{Apf} problem in infinite grid had a fundamental issue. These deterministic algorithms use a lot of space in the grid to solve the problem mainly because of maintaining the asymmetry of the configuration or to avoid a collision. These solution techniques can not be useful if there is a space constraint in the application field. In this work, we consider luminous robots (with one light that can take two colors) to avoid symmetry, but we carefully designed a deterministic algorithm that solves the \textsc{Apf} problem using minimal required space in the grid. The robots are autonomous, identical, and anonymous and they operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The \textsc{Apf} algorithm proposed in [WALCOM'2019] by Bose et al. can be modified using luminous robots so that it uses minimal space but that algorithm is not move-optimal. The algorithm proposed in this paper not only uses minimal space but also asymptotically move-optimal. The algorithm proposed in this work is designed for an infinite rectangular grid but it can be easily modified to work in a finite grid as well.
In computer vision, camera pose estimation from correspondences between 3D geometric entities and their projections into the image has been a widely investigated problem. Although most state-of-the-art methods exploit low-level primitives such as points or lines, the emergence of very effective CNN-based object detectors in the recent years has paved the way to the use of higher-level features carrying semantically meaningful information. Pioneering works in that direction have shown that modelling 3D objects by ellipsoids and 2D detections by ellipses offers a convenient manner to link 2D and 3D data. However, the mathematical formalism most often used in the related litterature does not enable to easily distinguish ellipsoids and ellipses from other quadrics and conics, leading to a loss of specificity potentially detrimental in some developments. Moreover, the linearization process of the projection equation creates an over-representation of the camera parameters, also possibly causing an efficiency loss. In this paper, we therefore introduce an ellipsoid-specific theoretical framework and demonstrate its beneficial properties in the context of pose estimation. More precisely, we first show that the proposed formalism enables to reduce the pose estimation problem to a position or orientation-only estimation problem in which the remaining unknowns can be derived in closed-form. Then, we demonstrate that it can be further reduced to a 1 Degree-of-Freedom (1DoF) problem and provide the analytical derivations of the pose as a function of that unique scalar unknown. We illustrate our theoretical considerations by visual examples and include a discussion on the practical aspects. Finally, we release this paper along with the corresponding source code in order to contribute towards more efficient resolutions of ellipsoid-related pose estimation problems.
We consider the differentially private estimation of multiple quantiles (MQ) of a distribution from a dataset, a key building block in modern data analysis. We apply the recent non-smoothed Inverse Sensitivity (IS) mechanism to this specific problem. We establish that the resulting method is closely related to the recently published ad hoc algorithm JointExp. In particular, they share the same computational complexity and a similar efficiency. We prove the statistical consistency of these two algorithms for continuous distributions. Furthermore, we demonstrate both theoretically and empirically that this method suffers from an important lack of performance in the case of peaked distributions, which can degrade up to a potentially catastrophic impact in the presence of atoms. Its smoothed version (i.e. by applying a max kernel to its output density) would solve this problem, but remains an open challenge to implement. As a proxy, we propose a simple and numerically efficient method called Heuristically Smoothed JointExp (HSJointExp), which is endowed with performance guarantees for a broad class of distributions and achieves results that are orders of magnitude better on problematic datasets.
Given a boolean predicate $\Pi$ on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for $\Pi$ is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying $\Pi$. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size $n$ of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of $O(\log \log n)$ bits per node in any $n$-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use $\Omega(\log \log n)$-bit per node registers in some $n$-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms.
Motivated by the increasing need for fast processing of large-scale graphs, we study a number of fundamental graph problems in a message-passing model for distributed computing, called $k$-machine model, where we have $k$ machines that jointly perform computations on $n$-node graphs. The graph is assumed to be partitioned in a balanced fashion among the $k$ machines, a common implementation in many real-world systems. Communication is point-to-point via bandwidth-constrained links, and the goal is to minimize the round complexity, i.e., the number of communication rounds required to finish a computation. We present a generic methodology that allows to obtain efficient algorithms in the $k$-machine model using distributed algorithms for the classical CONGEST model of distributed computing. Using this methodology, we obtain algorithms for various fundamental graph problems such as connectivity, minimum spanning trees, shortest paths, maximal independent sets, and finding subgraphs, showing that many of these problems can be solved in $\tilde{O}(n/k)$ rounds; this shows that one can achieve speedup nearly linear in $k$. To complement our upper bounds, we present lower bounds on the round complexity that quantify the fundamental limitations of solving graph problems distributively. We first show a lower bound of $\Omega(n/k)$ rounds for computing a spanning tree of the input graph. This result implies the same bound for other fundamental problems such as computing a minimum spanning tree, breadth-first tree, or shortest paths tree. We also show a $\tilde \Omega(n/k^2)$ lower bound for connectivity, spanning tree verification and other related problems. The latter lower bounds follow from the development and application of novel results in a random-partition variant of the classical communication complexity model.
We study the problem of allocating many mobile robots for the execution of a pre-defined sweep schedule in a known two-dimensional environment, with applications toward search and rescue, coverage, surveillance, monitoring, pursuit-evasion, and so on. The mobile robots (or agents) are assumed to have one-dimensional sensing capability with probabilistic guarantees that deteriorate as the sensing distance increases. In solving such tasks, a time-parameterized distribution of robots along the sweep frontier must be computed, with the objective to minimize the number of robots used to achieve some desired coverage quality guarantee or to maximize the probabilistic guarantee for a given number of robots. We propose a max-flow based algorithm for solving the allocation task, which builds on a decomposition technique of the workspace as a generalization of the well-known boustrophedon decomposition. Our proposed algorithm has a very low polynomial running time and completes in under two seconds for polygonal environments with over $10^5$ vertices. Simulation experiments are carried out on three realistic use cases with randomly generated obstacles of varying shapes, sizes, and spatial distributions, which demonstrate the applicability and scalability our proposed method.
In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes. In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context. In particular, a large GENCO's market share may imply that her offering strategy can alter the marginal price formation, which can be used to increase profit. We tackle this problem from a novel perspective. First, we propose a optimization-based methodology to summarize each GENCO's step-wise supply curves into a subset of representative price-energy blocks. Then, the relationship between the market price and the resulting energy block offering prices is modeled through a Bayesian linear regression approach, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy, represented by the regression coefficient probabilistic distributions. Finally, this predictive model is embedded in the stochastic optimization model by employing a constraint learning approach. Results show how allowing the GENCO to deviate from her true marginal costs renders significant changes in her profits and the market marginal price. Furthermore, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy is also effective in a real-world market contest.
Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges). Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.
Selecting period values for tasks is a very important step in the design process of a real-time system, especially due to the significance of its impact on system schedulability. It is well known that, under RMS, the utilization bound for a harmonic task set is 100%. Also, polynomial-time algorithms have been developed for response-time analysis of harmonic task sets. In practice, the largest acceptable value for the period of a task is determined by the performance and safety requirements of the application. In this paper, we address the problem of assigning harmonic periods to a task set such that every task gets assigned an integer period less than or equal to its application specified upper bound and the task utilization of every task is less than 1. We focus on integer solutions given the discrete nature of time in real-time computer systems. We first express this problem of assigning harmonic periods to a task set as a discrete piecewise optimization problem. We then present the 'Discrete Piecewise Harmonic Search' (DPHS) algorithm that outputs an optimal harmonic task assignment. We then define conditions for a metric to be rational for harmonization. We show that commonly used metrics like, the total percentage error (TPE), total system utilization (TSU), first order error (FOE), and maximum percentage error (MPE), are rational. We next prove that the DPHS algorithm finds the optimal feasible assignment, if one exists, for these rational metrics. We apply the DPHS algorithm to harmonize task sets used in real-world applications to highlight its benefits. We compare the performance of the DPHS algorithm against a brute-force search and find that the DPHS searches up to 94\% fewer task sets than the brute-force search that obtains the optimal solution.
We consider signal source localization from range-difference measurements. First, we give some readily-checked conditions on measurement noises and sensor deployment to guarantee the asymptotic identifiability of the model and show the consistency and asymptotic normality of the maximum likelihood (ML) estimator. Then, we devise an estimator that owns the same asymptotic property as the ML one. Specifically, we prove that the negative log-likelihood function converges to a function, which has a unique minimum and positive-definite Hessian at the true source's position. Hence, it is promising to execute local iterations, e.g., the Gauss-Newton (GN) algorithm, following a consistent estimate. The main issue involved is obtaining a preliminary consistent estimate. To this aim, we construct a linear least-squares problem via algebraic operation and constraint relaxation and obtain a closed-form solution. We then focus on deriving and eliminating the bias of the linear least-squares estimator, which yields an asymptotically unbiased (thus consistent) estimate. Noting that the bias is a function of the noise variance, we further devise a consistent noise variance estimator which involves $3$-order polynomial rooting. Based on the preliminary consistent location estimate, we prove that a one-step GN iteration suffices to achieve the same asymptotic property as the ML estimator. Simulation results demonstrate the superiority of our proposed algorithm in the large sample case.