Compared to minutia-based fingerprint representations, fixed-length representations are attractive due to simple and efficient matching. However, fixed-length fingerprint representations are limited in accuracy when matching fingerprints with different visible areas, which can occur due to different finger poses or acquisition methods. To address this issue, we propose a localized deep representation of fingerprint, named LDRF. By focusing on the discriminative characteristics within local regions, LDRF provides a more robust and accurate fixed-length representation for fingerprints with variable visible areas. LDRF can be adapted to retain information within any valid area, making it highly flexible. The matching scores produced by LDRF also exhibit intuitive statistical characteristics, which led us to propose a matching score normalization technique to mitigate the uncertainty in the cases of very small overlapping area. With this new technique, we can maintain a high level of accuracy and reliability in our fingerprint matching, even as the size of the database grows rapidly. Our experimental results on 21 datasets containing over 140K fingerprints of various finger poses and impression types show that LDRF outperforms other fixed-length representations and is robust to sensing technologies and impression types. Besides, the proposed matching score normalization effectively reduces the false match rate (FMR) in large-scale identification experiments comprising over 5.11 million fingerprints. Specifically, this technique results in a reduction of two orders of magnitude compared to matching without matching score normalization and five orders of magnitude compared to prior works.
Recently, high-fidelity scene reconstruction with an optimized 3D Gaussian splat representation has been introduced for novel view synthesis from sparse image sets. Making such representations suitable for applications like network streaming and rendering on low-power devices requires significantly reduced memory consumption as well as improved rendering efficiency. We propose a compressed 3D Gaussian splat representation that utilizes sensitivity-aware vector clustering with quantization-aware training to compress directional colors and Gaussian parameters. The learned codebooks have low bitrates and achieve a compression rate of up to $31\times$ on real-world scenes with only minimal degradation of visual quality. We demonstrate that the compressed splat representation can be efficiently rendered with hardware rasterization on lightweight GPUs at up to $4\times$ higher framerates than reported via an optimized GPU compute pipeline. Extensive experiments across multiple datasets demonstrate the robustness and rendering speed of the proposed approach.
In the context of interactive proofs, a "folding scheme" (popularized by Nova) is a way to combine multiple instances of a constraint system into a single instance, so the validity of the multiple instances can statistically be reduced to the validity of a single one. We show how Nova folding can be generalized to ``custom'' gates and extra rounds of verifier randomness. As an application of this extension, we present Origami, the first (to our knowledge) known example of a folding scheme for lookups.
The paper introduces a new estimation method for the standard linear regression model. The procedure is not driven by the optimisation of any objective function rather, it is a simple weighted average of slopes from observation pairs. The paper shows that such estimator is consistent for carefully selected weights. Other properties, such as asymptotic distributions, have also been derived to facilitate valid statistical inference. Unlike traditional methods, such as Least Squares and Maximum Likelihood, among others, the estimated residual of this estimator is not by construction orthogonal to the explanatory variables of the model. This property allows a wide range of practical applications, such as the testing of endogeneity, i.e.,the correlation between the explanatory variables and the disturbance terms, and potentially several others.
In this paper, we present a diffusion model-based framework for animating people from a single image for a given target 3D motion sequence. Our approach has two core components: a) learning priors about invisible parts of the human body and clothing, and b) rendering novel body poses with proper clothing and texture. For the first part, we learn an in-filling diffusion model to hallucinate unseen parts of a person given a single image. We train this model on texture map space, which makes it more sample-efficient since it is invariant to pose and viewpoint. Second, we develop a diffusion-based rendering pipeline, which is controlled by 3D human poses. This produces realistic renderings of novel poses of the person, including clothing, hair, and plausible in-filling of unseen regions. This disentangled approach allows our method to generate a sequence of images that are faithful to the target motion in the 3D pose and, to the input image in terms of visual similarity. In addition to that, the 3D control allows various synthetic camera trajectories to render a person. Our experiments show that our method is resilient in generating prolonged motions and varied challenging and complex poses compared to prior methods. Please check our website for more details: //boyiliee.github.io/3DHM.github.io/.
Deep neural networks have shown remarkable performance in image classification. However, their performance significantly deteriorates with corrupted input data. Domain generalization methods have been proposed to train robust models against out-of-distribution data. Data augmentation in the frequency domain is one of such approaches that enable a model to learn phase features to establish domain-invariant representations. This approach changes the amplitudes of the input data while preserving the phases. However, using fixed phases leads to susceptibility to phase fluctuations because amplitudes and phase fluctuations commonly occur in out-of-distribution. In this study, to address this problem, we introduce an approach using finite variation of the phases of input data rather than maintaining fixed phases. Based on the assumption that the degree of domain-invariant features varies for each phase, we propose a method to distinguish phases based on this degree. In addition, we propose a method called vital phase augmentation (VIPAug) that applies the variation to the phases differently according to the degree of domain-invariant features of given phases. The model depends more on the vital phases that contain more domain-invariant features for attaining robustness to amplitude and phase fluctuations. We present experimental evaluations of our proposed approach, which exhibited improved performance for both clean and corrupted data. VIPAug achieved SOTA performance on the benchmark CIFAR-10 and CIFAR-100 datasets, as well as near-SOTA performance on the ImageNet-100 and ImageNet datasets. Our code is available at //github.com/excitedkid/vipaug.
This paper considers the optimal sensor allocation for estimating the emission rates of multiple sources in a two-dimensional spatial domain. Locations of potential emission sources are known (e.g., factory stacks), and the number of sources is much greater than the number of sensors that can be deployed, giving rise to the optimal sensor allocation problem. In particular, we consider linear dispersion forward models, and the optimal sensor allocation is formulated as a bilevel optimization problem. The outer problem determines the optimal sensor locations by minimizing the overall Mean Squared Error of the estimated emission rates over various wind conditions, while the inner problem solves an inverse problem that estimates the emission rates. Two algorithms, including the repeated Sample Average Approximation and the Stochastic Gradient Descent based bilevel approximation, are investigated in solving the sensor allocation problem. Convergence analysis is performed to obtain the performance guarantee, and numerical examples are presented to illustrate the proposed approach.
Diffusion models trained with mean squared error loss tend to generate unrealistic samples. Current state-of-the-art models rely on classifier-free guidance to improve sample quality, yet its surprising effectiveness is not fully understood. In this paper, we show that the effectiveness of classifier-free guidance partly originates from it being a form of implicit perceptual guidance. As a result, we can directly incorporate perceptual loss in diffusion training to improve sample quality. Since the score matching objective used in diffusion training strongly resembles the denoising autoencoder objective used in unsupervised training of perceptual networks, the diffusion model itself is a perceptual network and can be used to generate meaningful perceptual loss. We propose a novel self-perceptual objective that results in diffusion models capable of generating more realistic samples. For conditional generation, our method only improves sample quality without entanglement with the conditional input and therefore does not sacrifice sample diversity. Our method can also improve sample quality for unconditional generation, which was not possible with classifier-free guidance before.
In online advertising scenario, sellers often create multiple creatives to provide comprehensive demonstrations, making it essential to present the most appealing design to maximize the Click-Through Rate (CTR). However, sellers generally struggle to consider users preferences for creative design, leading to the relatively lower aesthetics and quantities compared to Artificial Intelligence (AI)-based approaches. Traditional AI-based approaches still face the same problem of not considering user information while having limited aesthetic knowledge from designers. In fact that fusing the user information, the generated creatives can be more attractive because different users may have different preferences. To optimize the results, the generated creatives in traditional methods are then ranked by another module named creative ranking model. The ranking model can predict the CTR score for each creative considering user features. However, the two above stages are regarded as two different tasks and are optimized separately. In this paper, we proposed a new automated Creative Generation pipeline for Click-Through Rate (CG4CTR) with the goal of improving CTR during the creative generation stage. Our contributions have 4 parts: 1) The inpainting mode in stable diffusion is firstly applied to creative generation task in online advertising scene. A self-cyclic generation pipeline is proposed to ensure the convergence of training. 2) Prompt model is designed to generate individualized creatives for different user groups, which can further improve the diversity and quality. 3) Reward model comprehensively considers the multimodal features of image and text to improve the effectiveness of creative ranking task, and it is also critical in self-cyclic pipeline. 4) The significant benefits obtained in online and offline experiments verify the significance of our proposed method.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.