Creativity is a fundamental pillar of human expression and a driving force behind innovation, yet it now stands at a crossroads. As artificial intelligence advances at an astonishing pace, the question arises: can machines match and potentially surpass human creativity? This study investigates the creative performance of artificial intelligence (AI) compared to humans by analyzing the effects of two distinct prompting strategies (a Naive and an Expert AI) on AI and across three different tasks (Text, Draw and Alternative Uses tasks). Human external evaluators have scored creative outputs generated by humans and AI, and these subjective creative scores were complemented with objective measures based on quantitative measurements and NLP tools. The results reveal that AI generally outperforms humans in creative tasks, though this advantage is nuanced by the specific nature of each task and the chosen creativity criteria. Ultimately, while AI demonstrates superior performance in certain creative domains, our results suggest that integrating human feedback is crucial for maximizing AI's creative potential.
We examine the challenges in ranking multiple treatments based on their estimated effects when using linear regression or its popular double-machine-learning variant, the Partially Linear Model (PLM), in the presence of treatment effect heterogeneity. We demonstrate by example that overlap-weighting performed by linear models like PLM can produce Weighted Average Treatment Effects (WATE) that have rankings that are inconsistent with the rankings of the underlying Average Treatment Effects (ATE). We define this as ranking reversals and derive a necessary and sufficient condition for ranking reversals under the PLM. We conclude with several simulation studies conditions under which ranking reversals occur.
Social support, conveyed through a multitude of interactions and platforms such as social media, plays a pivotal role in fostering a sense of belonging, aiding resilience in the face of challenges, and enhancing overall well-being. This paper introduces Social Support Detection (SSD) as a Natural language processing (NLP) task aimed at identifying supportive interactions within online communities. The study presents the task of Social Support Detection (SSD) in three subtasks: two binary classification tasks and one multiclass task, with labels detailed in the dataset section. We conducted experiments on a dataset comprising 10,000 YouTube comments. Traditional machine learning models were employed, utilizing various feature combinations that encompass linguistic, psycholinguistic, emotional, and sentiment information. Additionally, we experimented with neural network-based models using various word embeddings to enhance the performance of our models across these subtasks.The results reveal a prevalence of group-oriented support in online dialogues, reflecting broader societal patterns. The findings demonstrate the effectiveness of integrating psycholinguistic, emotional, and sentiment features with n-grams in detecting social support and distinguishing whether it is directed toward an individual or a group. The best results for different subtasks across all experiments range from 0.72 to 0.82.
Large Language Models (LLMs) have significantly advanced software engineering (SE) tasks, with prompt engineering techniques enhancing their performance in code-related areas. However, the rapid development of foundational LLMs such as the non-reasoning model GPT-4o and the reasoning model o1 raises questions about the continued effectiveness of these prompt engineering techniques. This paper presents an extensive empirical study that reevaluates various prompt engineering techniques within the context of these advanced LLMs. Focusing on three representative SE tasks, i.e., code generation, code translation, and code summarization, we assess whether prompt engineering techniques still yield improvements with advanced models, the actual effectiveness of reasoning models compared to non-reasoning models, and whether the benefits of using these advanced models justify their increased costs. Our findings reveal that prompt engineering techniques developed for earlier LLMs may provide diminished benefits or even hinder performance when applied to advanced models. In reasoning LLMs, the ability of sophisticated built-in reasoning reduces the impact of complex prompts, sometimes making simple zero-shot prompting more effective. Furthermore, while reasoning models outperform non-reasoning models in tasks requiring complex reasoning, they offer minimal advantages in tasks that do not need reasoning and may incur unnecessary costs. Based on our study, we provide practical guidance for practitioners on selecting appropriate prompt engineering techniques and foundational LLMs, considering factors such as task requirements, operational costs, and environmental impact. Our work contributes to a deeper understanding of effectively harnessing advanced LLMs in SE tasks, informing future research and application development.
Trained on vast corpora of human language, language models demonstrate emergent human-like reasoning abilities. Yet they are still far from true intelligence, which opens up intriguing opportunities to explore the parallels of humans and model behaviors. In this work, we study the ability to skip steps in reasoning - a hallmark of human expertise developed through practice. Unlike humans, who may skip steps to enhance efficiency or to reduce cognitive load, models do not inherently possess such motivations to minimize reasoning steps. To address this, we introduce a controlled framework that stimulates step-skipping behavior by iteratively refining models to generate shorter and accurate reasoning paths. Empirical results indicate that models can develop the step skipping ability under our guidance. Moreover, after fine-tuning on expanded datasets that include both complete and skipped reasoning sequences, the models can not only resolve tasks with increased efficiency without sacrificing accuracy, but also exhibit comparable and even enhanced generalization capabilities in out-of-domain scenarios. Our work presents the first exploration into human-like step-skipping ability and provides fresh perspectives on how such cognitive abilities can benefit AI models.
Foundation models are predominantly trained in an unsupervised or self-supervised manner on highly diverse and large-scale datasets, making them broadly applicable to various downstream tasks. In this work, we investigate for the first time whether such models are suitable for the specific domain of face recognition. We further propose and demonstrate the adaptation of these models for face recognition across different levels of data availability. Extensive experiments are conducted on multiple foundation models and datasets of varying scales for training and fine-tuning, with evaluation on a wide range of benchmarks. Our results indicate that, despite their versatility, pre-trained foundation models underperform in face recognition compared to similar architectures trained specifically for this task. However, fine-tuning foundation models yields promising results, often surpassing models trained from scratch when training data is limited. Even with access to large-scale face recognition training datasets, fine-tuned foundation models perform comparably to models trained from scratch, but with lower training computational costs and without relying on the assumption of extensive data availability. Our analysis also explores bias in face recognition, with slightly higher bias observed in some settings when using foundation models.
Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: //github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
Relationships are essential to our happiness and wellbeing, yet their dissolution-the final stage of a relationship's lifecycle-is among the most stressful events individuals can experience, often leading to profound and lasting impacts. With the breakup process increasingly facilitated by technology, such as computer-mediated communication, and the likely future influence of generative AI (GenAI) tools, we conducted a semi-structured interview study with 21 participants. We aim to understand: 1) the current role of technology in the breakup process, 2) the needs and support individuals seek during this time, and 3) how GenAI might address or undermine these needs. Our findings show that people have distinct needs at various stages of breakups. While currently technology plays an important role, it falls short in supporting users' unmet needs. Participants envision that GenAI could: 1) aid in prompting self-reflection, providing neutral second opinions, and assisting with planning leading up to a breakup; 2) serve as a communication mediator, supporting wording and tone to facilitate emotional expression during breakup conversations; and 3) support personal growth and offer companionship after a breakup. However, our findings also reveal participants' concerns about involving GenAI in this process. Based on our results, we discuss the potential opportunities, design considerations, and harms of GenAI tools in facilitating people's relationship dissolution.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.