亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We identify hidden layers inside a deep neural network (DNN) with group actions on the data domain, and formulate a formal deep network as a dual voice transform with respect to the Koopman operator, a linear representation of the group action. Based on the group theoretic arguments, particularly by using Schur's lemma, we show a simple proof of the universality of DNNs.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Artificial neural networks (ANNs) have permeated various disciplinary domains, ranging from bioinformatics to financial analytics, where their application has become an indispensable facet of contemporary scientific research endeavors. However, the inherent limitations of traditional neural networks arise due to their relatively fixed network structures and activation functions. 1, The type of activation function is single and relatively fixed, which leads to poor "unit representation ability" of the network, and it is often used to solve simple problems with very complex networks; 2, the network structure is not adaptive, it is easy to cause network structure redundant or insufficient. To address the aforementioned issues, this study proposes a novel neural network called X-Net. By utilizing our designed Alternating Backpropagation mechanism, X-Net dynamically selects appropriate activation functions based on derivative information during training to enhance the network's representation capability for specific tasks. Simultaneously, it accurately adjusts the network structure at the neuron level to accommodate tasks of varying complexities and reduce computational costs. Through a series of experiments, we demonstrate the dual advantages of X-Net in terms of reducing model size and improving representation power. Specifically, in terms of the number of parameters, X-Net is only 3$\%$ of baselines on average, and only 1.4$\%$ under some tasks. In terms of representation ability, X-Net can achieve an average $R^2$=0.985 on the fitting task by only optimizing the activation function without introducing any parameters. Finally, we also tested the ability of X-Net to help scientific discovery on data from multiple disciplines such as society, energy, environment, and aerospace, and achieved concise and good results.

We consider the problem of tracking multiple, unknown, and time-varying numbers of objects using a distributed network of heterogeneous sensors. In an effort to derive a formulation for practical settings, we consider limited and unknown sensor field-of-views (FoVs), sensors with limited local computational resources and communication channel capacity. The resulting distributed multi-object tracking algorithm involves solving an NP-hard multidimensional assignment problem either optimally for small-size problems or sub-optimally for general practical problems. For general problems, we propose an efficient distributed multi-object tracking algorithm that performs track-to-track fusion using a clustering-based analysis of the state space transformed into a density space to mitigate the complexity of the assignment problem. The proposed algorithm can more efficiently group local track estimates for fusion than existing approaches. To ensure we achieve globally consistent identities for tracks across a network of nodes as objects move between FoVs, we develop a graph-based algorithm to achieve label consensus and minimise track segmentation. Numerical experiments with a synthetic and a real-world trajectory dataset demonstrate that our proposed method is significantly more computationally efficient than state-of-the-art solutions, achieving similar tracking accuracy and bandwidth requirements but with improved label consistency.

Training recurrent neural networks (RNNs) remains a challenge due to the instability of gradients across long time horizons, which can lead to exploding and vanishing gradients. Recent research has linked these problems to the values of Lyapunov exponents for the forward-dynamics, which describe the growth or shrinkage of infinitesimal perturbations. Here, we propose gradient flossing, a novel approach to tackling gradient instability by pushing Lyapunov exponents of the forward dynamics toward zero during learning. We achieve this by regularizing Lyapunov exponents through backpropagation using differentiable linear algebra. This enables us to "floss" the gradients, stabilizing them and thus improving network training. We demonstrate that gradient flossing controls not only the gradient norm but also the condition number of the long-term Jacobian, facilitating multidimensional error feedback propagation. We find that applying gradient flossing prior to training enhances both the success rate and convergence speed for tasks involving long time horizons. For challenging tasks, we show that gradient flossing during training can further increase the time horizon that can be bridged by backpropagation through time. Moreover, we demonstrate the effectiveness of our approach on various RNN architectures and tasks of variable temporal complexity. Additionally, we provide a simple implementation of our gradient flossing algorithm that can be used in practice. Our results indicate that gradient flossing via regularizing Lyapunov exponents can significantly enhance the effectiveness of RNN training and mitigate the exploding and vanishing gradient problem.

The use of transfer learning with deep neural networks has increasingly become widespread for deploying well-tested computer vision systems to newer domains, especially those with limited datasets. We describe a transfer learning use case for a domain with a data-starved regime, having fewer than 100 labeled target samples. We evaluate the effectiveness of convolutional feature extraction and fine-tuning of overparameterized models with respect to the size of target training data, as well as their generalization performance on data with covariate shift, or out-of-distribution (OOD) data. Our experiments demonstrate that both overparameterization and feature reuse contribute to the successful application of transfer learning in training image classifiers in data-starved regimes. We provide visual explanations to support our findings and conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.

The upcoming Sixth Generation (6G) network is projected to grapple with a range of security concerns, encompassing access control, authentication, secure connections among 6G Core (6GC) entities, and trustworthiness. Classical Virtual Private Networks (VPNs), extensively deployed in Evolved Packet Core (EPC) network infrastructure, are notoriously susceptible to a variety of attacks, including man-in-the-middle incursions, Domain Name System (DNS) hijacking, Denial of Service (DoS) attacks, port scanning, and persistent unauthorized access attempts. This paper introduces the concept of Software Defined Perimeter (SDP) as an innovative solution, providing an alternative to VPNs with the goal of fostering a secure zero-trust milieu within the 6G Core networks. We capitalize on the SDP controller-based authentication and authorization mechanisms to secure the EPC network's control and data plane functions, conceiving an architecture that is expansible to the 6G network. Further, we augment the SDP zero-trust capabilities via the incorporation of a dynamic component, the Moving Target Defense (MTD). This enhances the network's resilience against attacks targeting traditionally static network environments established via VPNs. Following rigorous testbed analysis, our proposed framework manifests superior resilience against DoS and port scanning attacks when juxtaposed with traditional VPN methodologies.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

北京阿比特科技有限公司