亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a sensor that samples an $N$-state continuous-time Markov chain (CTMC)-based information source process, and transmits the observed state of the source, to a remote monitor tasked with timely tracking of the source process. The mismatch between the source and monitor processes is quantified by age of incorrect information (AoII), which penalizes the mismatch as it stays longer, and our objective is to minimize the average AoII under an average sampling rate constraint. We assume a perfect reverse channel and hence the sensor has information of the estimate while initiating a transmission or preempting an ongoing transmission. First, by modeling the problem as an average cost constrained semi-Markov decision process (CSMDP), we show that the structure of the problem gives rise to an optimum threshold policy for which the sensor initiates a transmission once the AoII exceeds a threshold depending on the instantaneous values of both the source and monitor processes. However, due to the high complexity of obtaining the optimum policy in this general setting, we consider a relaxed problem where the thresholds are allowed to be dependent only on the estimate. We show that this relaxed problem can be solved with a novel CSMDP formulation based on the theory of absorbing MCs, with a computational complexity of $\mathcal{O}(N^4)$, allowing one to obtain optimum policies for general CTMCs with over a hundred states.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 輸出 · 講稿 ·
2024 年 3 月 12 日

The sequence reconstruction problem, introduced by Levenshtein in 2001, considers a scenario where the sender transmits a codeword from some codebook, and the receiver obtains $N$ noisy outputs of the codeword. We study the problem of efficient reconstruction using $N$ outputs that are each corrupted by at most $t$ substitutions. Specifically, for the ubiquitous Reed-Solomon codes, we adapt the Koetter-Vardy soft-decoding algorithm, presenting a reconstruction algorithm capable of correcting beyond Johnson radius. Furthermore, the algorithm uses $\mathcal{O}(nN)$ field operations, where $n$ is the codeword length.

Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.

Vector Error Correction Model (VECM) is a classic method to analyse cointegration relationships amongst multivariate non-stationary time series. In this paper, we focus on high dimensional setting and seek for sample-size-efficient methodology to determine the level of cointegration. Our investigation centres at a Bayesian approach to analyse the cointegration matrix, henceforth determining the cointegration rank. We design two algorithms and implement them on simulated examples, yielding promising results particularly when dealing with high number of variables and relatively low number of observations. Furthermore, we extend this methodology to empirically investigate the constituents of the S&P 500 index, where low-volatility portfolios can be found during both in-sample training and out-of-sample testing periods.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.

Semantic scene completion (SSC) aims to predict complete 3D voxel occupancy and semantics from a single-view RGB-D image, and recent SSC methods commonly adopt multi-modal inputs. However, our investigation reveals two limitations: ineffective feature learning from single modalities and overfitting to limited datasets. To address these issues, this paper proposes a novel SSC framework - Adversarial Modality Modulation Network (AMMNet) - with a fresh perspective of optimizing gradient updates. The proposed AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition. Specifically, the cross-modal modulation adaptively re-calibrates the features to better excite representation potentials from each single modality. The adversarial training employs a minimax game of evolving gradients, with customized guidance to strengthen the generator's perception of visual fidelity from both geometric completeness and semantic correctness. Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin, providing a promising direction for improving the effectiveness and generalization of SSC methods.

Owning to the reflection gain and double path loss featured by intelligent reflecting surface (IRS) channels, handover (HO) locations become irregular and the signal strength fluctuates sharply with variations in IRS connections during HO, the risk of HO failures (HOFs) is exacerbated and thus HO parameters require reconfiguration. However, existing HO models only assume monotonic negative exponential path loss and cannot obtain sound HO parameters. This paper proposes a discrete-time model to explicitly track the HO process with variations in IRS connections, where IRS connections and HO process are discretized as finite states by measurement intervals, and transitions between states are modeled as stochastic processes. Specifically, to capture signal fluctuations during HO, IRS connection state-dependent distributions of the user-IRS distance are modified by the correlation between measurement intervals. In addition, states of the HO process are formed with Time-to-Trigger and HO margin whose transition probabilities are integrated concerning all IRS connection states. Trigger location distributions and probabilities of HO, HOF, and ping-pong (PP) are obtained by tracing user HO states. Results show IRSs mitigate PPs by 48% but exacerbate HOFs by 90% under regular parameters. Optimal parameters are mined ensuring probabilities of HOF and PP are both less than 0.1%.

Purpose: Advances in deep learning have resulted in effective models for surgical video analysis; however, these models often fail to generalize across medical centers due to domain shift caused by variations in surgical workflow, camera setups, and patient demographics. Recently, object-centric learning has emerged as a promising approach for improved surgical scene understanding, capturing and disentangling visual and semantic properties of surgical tools and anatomy to improve downstream task performance. In this work, we conduct a multi-centric performance benchmark of object-centric approaches, focusing on Critical View of Safety assessment in laparoscopic cholecystectomy, then propose an improved approach for unseen domain generalization. Methods: We evaluate four object-centric approaches for domain generalization, establishing baseline performance. Next, leveraging the disentangled nature of object-centric representations, we dissect one of these methods through a series of ablations (e.g. ignoring either visual or semantic features for downstream classification). Finally, based on the results of these ablations, we develop an optimized method specifically tailored for domain generalization, LG-DG, that includes a novel disentanglement loss function. Results: Our optimized approach, LG-DG, achieves an improvement of 9.28% over the best baseline approach. More broadly, we show that object-centric approaches are highly effective for domain generalization thanks to their modular approach to representation learning. Conclusion: We investigate the use of object-centric methods for unseen domain generalization, identify method-agnostic factors critical for performance, and present an optimized approach that substantially outperforms existing methods.

Large language model (LLM) has achieved promising performance in multilingual machine translation tasks through zero/few-shot prompts or prompt-tuning. However, due to the mixture of multilingual data during the pre-training of LLM, the LLM-based translation models face the off-target issue in both prompt-based methods, including a series of phenomena, namely instruction misunderstanding, translation with wrong language and over-generation. For this issue, this paper introduces an \textbf{\underline{A}}uto-\textbf{\underline{C}}onstriction \textbf{\underline{T}}urning mechanism for \textbf{\underline{M}}ultilingual \textbf{\underline{N}}eural \textbf{\underline{M}}achine \textbf{\underline{T}}ranslation (\model), which is a novel supervised fine-tuning mechanism and orthogonal to the traditional prompt-based methods. In this method, \model automatically constructs a constrained template in the target side by adding trigger tokens ahead of the ground truth. Furthermore, trigger tokens can be arranged and combined freely to represent different task semantics, and they can be iteratively updated to maximize the label likelihood. Experiments are performed on WMT test sets with multiple metrics, and the experimental results demonstrate that \model achieves substantially improved performance across multiple translation directions and reduce the off-target phenomena in the translation.

Both dual-functional radar-communication (DFRC) and massive multiple-input multiple-output (MIMO) have been recognized as enabling technologies for 6G wireless networks. This paper considers the advanced waveform design for hardware-efficient massive MIMO DFRC systems. Specifically, the transmit waveform is imposed with the quantized constant-envelope (QCE) constraint, which facilitates the employment of low-resolution digital-to-analog converters (DACs) and power-efficient amplifiers. The waveform design problem is formulated as the minimization of the mean square error (MSE) between the designed and desired beampatterns subject to the constructive interference (CI)-based communication quality of service (QoS) constraints and the QCE constraint. To solve the formulated problem, we first utilize the penalty technique to transform the discrete problem into an equivalent continuous penalty model. Then, we propose an inexact augmented Lagrangian method (ALM) algorithm for solving the penalty model. In particular, the ALM subproblem at each iteration is solved by a custom-built block successive upper-bound minimization (BSUM) algorithm, which admits closed-form updates, making the proposed inexact ALM algorithm computationally efficient. Simulation results demonstrate the superiority of the proposed approach over existing state-of-the-art ones. In addition, extensive simulations are conducted to examine the impact of various system parameters on the trade-off between communication and radar performances.

The application of eigenvalue theory to dual quaternion Hermitian matrices holds significance in the realm of multi-agent formation control. In this paper, we study the Rayleigh quotient iteration (RQI) for solving the right eigenpairs of dual quaternion Hermitian matrices. Combined with dual representation, the RQI algorithm can effectively compute the extreme eigenvalue along with the associated eigenvector of the large dual quaternion Hermitian matrices. Furthermore, a convergence analysis of the Rayleigh quotient iteration is derived, demonstrating a local convergence rate of at least cubic, which is faster than the linear convergence rate of the power method. Numerical examples are provided to illustrate the high accuracy and low CPU time cost of the proposed Rayleigh quotient iteration compared with the power method for solving the dual quaternion Hermitian eigenvalue problem.

北京阿比特科技有限公司