亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep image denoising models often rely on large amount of training data for the high quality performance. However, it is challenging to obtain sufficient amount of data under real-world scenarios for the supervised training. As such, synthesizing realistic noise becomes an important solution. However, existing techniques have limitations in modeling complex noise distributions, resulting in residual noise and edge artifacts in denoising methods relying on synthetic data. To overcome these challenges, we propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD). In particular, the proposed time-aware controlling module can simulate various environmental conditions under given camera settings. RNSD can incorporate guided multiscale content, such that more realistic noise with spatial correlations can be generated at multiple frequencies. In addition, we construct an inversion mechanism to predict the unknown camera setting, which enables the extension of RNSD to datasets without setting information. Extensive experiments demonstrate that our RNSD method significantly outperforms the existing methods not only in the synthesized noise under multiple realism metrics, but also in the single image denoising performances.

相關內容

Achieving state-of-the-art results in face verification systems typically hinges on the availability of labeled face training data, a resource that often proves challenging to acquire in substantial quantities. In this research endeavor, we proposed employing Siamese networks for face recognition, eliminating the need for labeled face images. We achieve this by strategically leveraging negative samples alongside nearest neighbor counterparts, thereby establishing positive and negative pairs through an unsupervised methodology. The architectural framework adopts a VGG encoder, trained as a double branch siamese network. Our primary aim is to circumvent the necessity for labeled face image data, thus proposing the generation of training pairs in an entirely unsupervised manner. Positive training data are selected within a dataset based on their highest cosine similarity scores with a designated anchor, while negative training data are culled in a parallel fashion, though drawn from an alternate dataset. During training, the proposed siamese network conducts binary classification via cross-entropy loss. Subsequently, during the testing phase, we directly extract face verification scores from the network's output layer. Experimental results reveal that the proposed unsupervised system delivers a performance on par with a similar but fully supervised baseline.

Denoising Diffusion models have exhibited remarkable capabilities in image generation. However, generating high-quality samples requires a large number of iterations. Knowledge distillation for diffusion models is an effective method to address this limitation with a shortened sampling process but causes degraded generative quality. Based on our analysis with bias-variance decomposition and experimental observations, we attribute the degradation to the spatial fitting error occurring in the training of both the teacher and student model. Accordingly, we propose $\textbf{S}$patial $\textbf{F}$itting-$\textbf{E}$rror $\textbf{R}$eduction $\textbf{D}$istillation model ($\textbf{SFERD}$). SFERD utilizes attention guidance from the teacher model and a designed semantic gradient predictor to reduce the student's fitting error. Empirically, our proposed model facilitates high-quality sample generation in a few function evaluations. We achieve an FID of 5.31 on CIFAR-10 and 9.39 on ImageNet 64$\times$64 with only one step, outperforming existing diffusion methods. Our study provides a new perspective on diffusion distillation by highlighting the intrinsic denoising ability of models. Project link: \url{//github.com/Sainzerjj/SFERD}.

In recent years, diffusion models have gained popularity for their ability to generate higher-quality images in comparison to GAN models. However, like any other large generative models, these models require a huge amount of data, computational resources, and meticulous tuning for successful training. This poses a significant challenge, rendering it infeasible for most individuals. As a result, the research community has devised methods to leverage pre-trained unconditional diffusion models with additional guidance for the purpose of conditional image generative. These methods enable conditional image generations on diverse inputs and, most importantly, circumvent the need for training the diffusion model. In this paper, our objective is to reduce the time-required and computational overhead introduced by the addition of guidance in diffusion models -- while maintaining comparable image quality. We propose a set of methods based on our empirical analysis, demonstrating a reduction in computation time by approximately threefold.

Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, which maps data to noise according to equations inspired by thermodynamics and can significantly impact performance. A widely held assumption is that the ELBO objective of a diffusion model is invariant to the noise process (Kingma et al.,2021). In this work, we dispel this assumption -- we propose multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies Gaussian noise at different rates across an image. Our method consists of three components -- a multivariate noise schedule, instance-conditional diffusion, and auxiliary variables -- which ensure that the learning objective is no longer invariant to the choice of the noise schedule as in previous works. Our work is grounded in Bayesian inference and casts the learned diffusion process as an approximate variational posterior that yields a tighter lower bound on marginal likelihood. Empirically, MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to classical diffusion. Code is available at //github.com/s-sahoo/MuLAN

Sign Language Production (SLP) is the tough task of turning sign language into sign videos. The main goal of SLP is to create these videos using a sign gloss. In this research, we've developed a new method to make high-quality sign videos without using human poses as a middle step. Our model works in two main parts: first, it learns from a generator and the video's hidden features, and next, it uses another model to understand the order of these hidden features. To make this method even better for sign videos, we make several significant improvements. (i) In the first stage, we take an improved 3D VQ-GAN to learn downsampled latent representations. (ii) In the second stage, we introduce sequence-to-sequence attention to better leverage conditional information. (iii) The separated two-stage training discards the realistic visual semantic of the latent codes in the second stage. To endow the latent sequences semantic information, we extend the token-level autoregressive latent codes learning with perceptual loss and reconstruction loss for the prior model with visual perception. Compared with previous state-of-the-art approaches, our model performs consistently better on two word-level sign language datasets, i.e., WLASL and NMFs-CSL.

Researchers often run resource-intensive randomized controlled trials (RCTs) to estimate the causal effects of interventions on outcomes of interest. Yet these outcomes are often noisy, and estimated overall effects can be small or imprecise. Nevertheless, we may still be able to produce reliable evidence of the efficacy of an intervention by finding subgroups with significant effects. In this paper, we propose a machine-learning method that is specifically optimized for finding such subgroups in noisy data. Unlike available methods for personalized treatment assignment, our tool is fundamentally designed to take significance testing into account: it produces a subgroup that is chosen to maximize the probability of obtaining a statistically significant positive treatment effect. We provide a computationally efficient implementation using decision trees and demonstrate its gain over selecting subgroups based on positive (estimated) treatment effects. Compared to standard tree-based regression and classification tools, this approach tends to yield higher power in detecting subgroups affected by the treatment.

One potential drawback of using aggregated performance measurement in machine learning is that models may learn to accept higher errors on some training cases as compromises for lower errors on others, with the lower errors actually being instances of overfitting. This can lead to both stagnation at local optima and poor generalization. Lexicase selection is an uncompromising method developed in evolutionary computation, which selects models on the basis of sequences of individual training case errors instead of using aggregated metrics such as loss and accuracy. In this paper, we investigate how lexicase selection, in its general form, can be integrated into the context of deep learning to enhance generalization. We propose Gradient Lexicase Selection, an optimization framework that combines gradient descent and lexicase selection in an evolutionary fashion. Our experimental results demonstrate that the proposed method improves the generalization performance of various widely-used deep neural network architectures across three image classification benchmarks. Additionally, qualitative analysis suggests that our method assists networks in learning more diverse representations. Our source code is available on GitHub: //github.com/ld-ing/gradient-lexicase.

Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models will be made publicly available.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

北京阿比特科技有限公司