亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence is not only increasingly used in business and administration contexts, but a race for its regulation is also underway, with the EU spearheading the efforts. Contrary to existing literature, this article suggests, however, that the most far-reaching and effective EU rules for AI applications in the digital economy will not be contained in the proposed AI Act - but have just been enacted in the Digital Markets Act. We analyze the impact of the DMA and related EU acts on AI models and their underlying data across four key areas: disclosure requirements; the regulation of AI training data; access rules; and the regime for fair rankings. The paper demonstrates that fairness, in the sense of the DMA, goes beyond traditionally protected categories of non-discrimination law on which scholarship at the intersection of AI and law has so far largely focused on. Rather, we draw on competition law and the FRAND criteria known from intellectual property law to interpret and refine the DMA provisions on fair rankings. Moreover, we show how, based on CJEU jurisprudence, a coherent interpretation of the concept of non-discrimination in both traditional non-discrimination and competition law may be found. The final part sketches specific proposals for a comprehensive framework of transparency, access, and fairness under the DMA and beyond.

相關內容

Categorization via gender is omnipresent throughout society, and thus also computing; gender identity is often requested of users before they use software or web services. Despite this fact, no research has explored how software developers approach requesting gender disclosure from users. To understand how developers think about gender in software, we present an interview study with 15 software developers recruited from the freelancing platform Upwork as well as Twitter. We also collected and categorized 917 threads that contained keywords relevant to gender from programming-related sub-forums on the social media service Reddit. 16 posts that discussed approaches to gender disclosure were further analyzed. We found that while some developers have an understanding of inclusive gender options, programmers rarely consider when gender data is necessary or the way in which they request gender disclosure from users. Our findings have implications for programmers, software engineering educators, and the broader community concerned with inclusivity.

Large generative AI models (LGAIMs), such as ChatGPT or Stable Diffusion, are rapidly transforming the way we communicate, illustrate, and create. However, AI regulation, in the EU and beyond, has primarily focused on conventional AI models, not LGAIMs. This paper will situate these new generative models in the current debate on trustworthy AI regulation, and ask how the law can be tailored to their capabilities. After laying technical foundations, the legal part of the paper proceeds in four steps, covering (1) direct regulation, (2) data protection, (3) content moderation, and (4) policy proposals. It suggests a novel terminology to capture the AI value chain in LGAIM settings by differentiating between LGAIM developers, deployers, professional and non-professional users, as well as recipients of LGAIM output. We tailor regulatory duties to these different actors along the value chain and suggest four strategies to ensure that LGAIMs are trustworthy and deployed for the benefit of society at large. Rules in the AI Act and other direct regulation must match the specificities of pre-trained models. In particular, regulation should focus on concrete high-risk applications, and not the pre-trained model itself, and should include (i) obligations regarding transparency and (ii) risk management. Non-discrimination provisions (iii) may, however, apply to LGAIM developers. Lastly, (iv) the core of the DSA content moderation rules should be expanded to cover LGAIMs. This includes notice and action mechanisms, and trusted flaggers. In all areas, regulators and lawmakers need to act fast to keep track with the dynamics of ChatGPT et al.

The importance of understanding and correcting algorithmic bias in machine learning (ML) has led to an increase in research on fairness in ML, which typically assumes that the underlying data is independent and identically distributed (IID). However, in reality, data is often represented using non-IID graph structures that capture connections among individual units. To address bias in ML systems, it is crucial to bridge the gap between the traditional fairness literature designed for IID data and the ubiquity of non-IID graph data. In this survey, we review such recent advance in fairness amidst non-IID graph data and identify datasets and evaluation metrics available for future research. We also point out the limitations of existing work as well as promising future directions.

Proponents of explainable AI have often argued that it constitutes an essential path towards algorithmic fairness. Prior works examining these claims have primarily evaluated explanations based on their effects on humans' perceptions, but there is scant research on the relationship between explanations and distributive fairness of AI-assisted decisions. In this paper, we conduct an empirical study to examine the relationship between feature-based explanations and distributive fairness, mediated by human perceptions and reliance on AI recommendations. Our findings show that explanations influence fairness perceptions, which, in turn, relate to humans' tendency to adhere to AI recommendations. However, our findings suggest that such explanations do not enable humans to discern correct and wrong AI recommendations. Instead, we show that they may affect reliance irrespective of the correctness of AI recommendations. Depending on which features an explanation highlights, this can foster or hinder distributive fairness: when explanations highlight features that are task-irrelevant and evidently associated with the sensitive attribute, this prompts overrides that counter stereotype-aligned AI recommendations. Meanwhile, if explanations appear task-relevant, this induces reliance behavior that reinforces stereotype-aligned errors. These results show that feature-based explanations are not a reliable mechanism to improve distributive fairness, as their ability to do so relies on a human-in-the-loop operationalization of the flawed notion of "fairness through unawareness". Finally, our study design provides a blueprint to evaluate the suitability of other explanations as pathways towards improved distributive fairness of AI-assisted decisions.

As the availability of omics data has increased in the last few years, more multi-omics data have been generated, that is, high-dimensional molecular data consisting of several types such as genomic, transcriptomic, or proteomic data, all obtained from the same patients. Such data lend themselves to being used as covariates in automatic outcome prediction because each omics type may contribute unique information, possibly improving predictions compared to using only one omics data type. Frequently, however, in the training data and the data to which automatic prediction rules should be applied, the test data, the different omics data types are not available for all patients. We refer to this type of data as block-wise missing multi-omics data. First, we provide a literature review on existing prediction methods applicable to such data. Subsequently, using a collection of 13 publicly available multi-omics data sets, we compare the predictive performances of several of these approaches for different block-wise missingness patterns. Finally, we discuss the results of this empirical comparison study and draw some tentative conclusions.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司